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Design and analysis of modern engineering systems are complicated, mostly relying on computational analyses
codes and hence often computationally expensive. Meanwhile, improved computer-aided design and numerical
simulation methods are used extensively in the design process. Even continuing growth of computing power and
speed, computationally cheap and reliable models or simulation techniques are not available, at least as ready-
to-use computer analysis codes. The necessity of tolerance analysis takes important place at the same time
with improved CAD and computer based process planning, because of high quality production requirements,
and reduces manufacturing costs. Simulation based design and optimization becomes the only option to meet
the specifications, and improves the system reliability. In the last few decades, the use of surrogate models has
achieved significant advantages, because they provide fast computation and design investigation as they replace
computationally expensive to run computer analyses with cheap to run approximations. Surrogate models also
simplify the integration of analyses codes to optimization and reliability assessment studies. In this paper, response
surface and Kriging surrogate models are used within a Monte Carlo simulation framework for tolerance analysis.
As an illustrative example problem, tolerance analyses of a clutch assembly with nonlinear objection function are
used. The effects of the surrogate model parameters (e.g., the use of different regression polynomials) and the
number of training points on tolerance analysis are explored.
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1. Introduction
As the computational power improves and performance

requirements continually tighten, the cost and the speci-
fications of assemblies increased as well. Eventual atten-
tion on tolerance analyses is rapidly increasing in engi-
neering field, because higher cost or poor quality perfor-
mance loses the market share. One of the main factors to
determinate the quality of a product and cost is the preci-
sion design, which can be accomplished by correct assign-
ment in tolerances. The functionality requirements of an
assembly is also important so a robust tolerance analysis
is required. The traditional precision design cannot meet
the requirement in the digital manufacturing process.

The main objective of this paper is to prove advan-
tage and accuracy of surrogate models on tolerance anal-
ysis. Before the explaination of details, fundamentals of
surrogate models are described and given a mathemat-
ical statement of statistical problem are given. Kriging
(KM) [1, 2] and response surface methods (RSM) [3, 4]
are used to compare performance with Monte Carlo sim-
ulation (MCS) [5, 6]. This is accomplished by DACE
Toolbox [7] and some Matlab code written by using soft-
ware’s embedded library. At the end characteristic of
system is discussed with physical system result conducted
by Monte Carlo simulations.

2. Tolerance analysis of mechanism employing
a multiple surrogate models

In this work overrunning clutch assembly, shown
in Fig. 1, is considered. This assembly is known as For-
tini overrunning clutch assembly [8], and there are many
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researchers on this in varied aspects such as Greenwood
and Chase [9], Choi et al. [10], Lee et al. [11] and so on.

The problem was examined by Fortini and he formu-
lated the assembly equation as follows:

y = arccos ((x1 + 0.5(x2 + x3))

/ (x4 − 0.5(x2 + x3))) , (1)
where y is the contact angle in terms of the independent
component variables, xi, which must be functional.

The functionality requirement for this structure is that
the contact angle y must lie in the range 0.122±0.035 rad
(7.0 ± 2.0 deg). Other independent variables are as-
sumed to be Gaussian distribution and when, in order,
xi are 55.29, 22.86, 22.86, and 101.69 mm, standard devi-
ations are given as 0.1016, 0.01016, 0.01016, 0.2032 mm,
respectively.

Fig. 1. Fortini’s overrunning clutch assembly.

System characteristic is investigated by applying MCS
depending on design requirements, and listed in Table I.
Between ten thousand and a million normally distributed
random numbers were generated by using Matlab embed-
ded function, “icdf”.
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TABLE I

Overrunning clutch assembly results using KM.

40 training points 100 training points
outputs of controlled assembly variable regpoly0 regpoly1 regpoly2 regpoly0 regpoly1 regpoly2

mean [radian] 0.1189 0.1305 0.1296 0.1267 0.1299 0.1297
standard deviation [radian] 0.0067 0.0244 0.0226 0.0097 0.0229 0.0228

skewness 0.2824 –0.0764 –0.6835 –0.5232 –0.1469 –0.6010
kurtosis 7.3471 3.0709 3.6900 4.9438 3.0664 3.5702

rejects at upper limits [%] 0.01 13.45 9.56 0.19 11.19 10.2
rejects at lower limits [%] 0.08 4.04 4.37 0.12 3.6 4.33

total rejects [%] 0.09 17.49 13.93 0.31 14.79 14.53

TABLE II

Overrunning clutch assembly results using MCS.

Number of simulations
outputs of controlled assembly variable 10,000 100,000 1,000,000

mean [radian] 0.1287 0.1293 0.1293
standard deviation [radian] 0.0245 0.0238 0.0236

skewness –0.8513 –0.7185 –0.7316
kurtosis 4.6820 4.0620 4.2006

rejects at upper limits [%] 10.0900 10.0430 9.9619
rejects at lower limits [%] 5.4100 4.7020 4.6510

total rejects [%] 15.5000 14.7450 14.6129

TABLE III

Overrunning clutch assembly results using RSM.

40 training points 100 training points
Outputs of controlled
assembly variable

Linear Interactions Quadratic
Pure

quadratic
Linear Interactions Quadratic

Pure
quadratic

mean [radian] 0.1304 0.1307 0.1296 0.1302 0.1299 0.1300 0.1297 0.1299
standard deviation [radian] 0.0245 0.0247 0.0226 0.0235 0.0231 0.0232 0.0228 0.0230

skewness –0.0375 –0.0234 –0.6838 –0.3555 –0.0368 –0.1227 –0.5918 –0.3793
kurtosis 2.9850 3.0006 3.6737 3.1807 2.9853 3.0335 3.5087 3.2184

rejects at upper limits [%] 13.78 14.2 9.5 12.24 11.87 12 10.29 11.27
rejects at lower limits [%] 3.83 3.79 4.38 4.1 3.15 3.44 4.32 3.93

total rejects [%] 17.61 17.99 13.88 16.34 15.02 15.44 14.61 15.2

MCS results in Table II show that ten thousand sam-
ples are convergent according to one million simulations.
When accuracy and cost of calculation are considered,
simulations with 10,000 samples are assumed to be ade-
quate for this problem.

To perform tolerance analyses of the clutch assembly
using surrogate based Monte Carlo simulation, first the
Kriging method is applied on this example. The Krig-
ing models are constructed with “dacefit” Matlab func-
tion with Gaussian correlation parameter. To see the
effect of the number of training points on the accuracy of
the Kriging models, 40 and 100 training points are used.
The effect of regression model is also examined by creat-
ing linear, first and second degree regression polynomial.
After the Kriging models are constructed, MCS is used

to perform tolerance analysis. 10,000 simulation points
are generated for MCS. The results are shown in Table I.

Higher order regression polynomials help to get better
approximation according to Table I. Increasing the num-
ber of training points used to construct Kriging model
from 40 to 100 does not have a significant effect in KM
accuracy for higher degree regression polynomials. Com-
parison of sample based MCS and KM based MCS shows
that the performance of KM based MCS with higher re-
gression polynomial is as good as sample based MCS (no-
tice that the difference is less than 2%).

The RSM is then applied on this example with the
same number of training points, as shown in Table III.
While generating RSM models, we take advantage of the
“regstats” function of embedded Matlab library to find
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coefficients. As an predictor, “x2fx” function is used. Dif-
ferent RSM formulations such as linear, quadratic, etc.
are also utilized to compare with KM. The results are
shown in Table III.

Quadratic regression model at RSM corresponds with
regpoly2 at KM. Table III shows that higher order regres-
sion polynomial similar to KM should be used in order to
increase the accuracy. Increase of the number of training
points from 40 to 100 seems not to make more difference
in predictions of RSM. The comparison of the results in
Table I and Table III shows that the performances of KM
with second order trend model and quadratic RSM are
close to each other.

3. Conclusion

In this paper, response surface and Kriging surrogate
models are used within a Monte Carlo simulation frame-
work for tolerance analysis. Tolerance analyses of a
clutch assembly with nonlinear objection function is used
as an illustrative example problem. The effects of the sur-
rogate model parameters (such as the use of different re-
gression polynomials) and the number of training points
on tolerance analysis are explored. From the finding of
this study, the following conclusions can be drawn:

• The performances of quadratic RSM and KM with
second order regression polynomial were close.

• Comparison of sample based MCS and surrogate
based MCS shows that the performance of surro-
gate based MCS is as good as sample based MCS.

• Increase of the number of training points from 40
to 100 did not increase much the accuracy of sur-
rogate models.

In future work the tolerance analysis may include the
use of a more complex objective function with more de-
sign variable, and the use of other surrogate model types
than RSM and Kriging. Also, the application of the sur-
rogate based tolerance analysis to a complicated 3D tol-
erance analysis example is a future direction of research.
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