Special issue of the International Conference on Computational and Experimental Science and Engineering (ICCESEN 2014)

Cytotoxic Effects of Different ICG Concentrations and Laser Parameters on Neuroblastoma

A. AK^{a,*}, Ö. KAYA^b, D.T. COŞAN^c AND M. GÜLSOY^b ^aErzincan University, Biomedical Engineering Department, Erzincan, Turkey ^bBoğaziçi University, Institute of Biomedical Engineering, İstanbul, Turkey ^cEskişehir Osmangazi University, Medical Biology, Eskişehir, Turkey

Photodynamic therapy (PDT) is a minimally invasive treatment for cancer therapy. It can be administered in combination with other treatments such as chemotherapy, radiotherapy, and surgical excision. PDT involves a photosensitizing agent that is activated by exposure to a specific wavelength of light. PDT is a cold photochemical process, there is no tissue heating. In our study, we investigated whether different laser parameters with different concentrations of indocyanine green (ICG) have cytotoxic and anti-proliferative effects on neuroblastoma. Plates were divided groups as control, only ICG concentrations (25 and 50 μ g/ml), only laser treatment I (50 J/cm²), only laser treatment II (100 J/cm²), 25 μ g/ml ICG + laser treatment I and 25 μ g/ml ICG + laser treatment II, 50 μ g/ml ICG + laser treatment I and 50 μ g/ml ICG + laser treatment I. Neuroblastoma cell lines were irradiated with an in-house developed diode laser system ($\lambda = 809$ nm, 70 mW/cm², 50 & 100 J/cm²) in continuous wave operation mode after ICG application. Cell proliferation was measured by XTT assay after light irradiation. Cell proliferation was decreased in a dose-dependent manner in 25 and 50 μ g/ml ICG concentrations when compared with control. The applied ICG concentrations (especially 50 μ g/ml) had cytotoxic effects for neuroblastoma cell lines, SH-SY5Y. There was no difference between laser treatment groups (L 50 & 100 J/cm²). However, PDT groups (laser exposure with ICG) showed significant inhibition of cell viability (p < 0.05). Additionally, laser exposure did not increase the well temperature above the incubation parameter. In conclusion, PDT has cytotoxic effects in neuroblastoma cell lines. Appropriate ICG dose — laser parameter combinations must be determined for each cell type. Different energy densities may cause different effects of PDT on inhibition of cell viability.

DOI: 10.12693/APhysPolA.128.B-381 PACS: 42.62.–B, 87.19.XJ

1. Introduction

Photodynamic therapy (PDT) is showing great promise as a minimal invasive strategy in the treatment of various cancers. PDT requires a chemical agent that is called as photosensitizer and activation of the agent by light of a specific wavelength to produce oxygendependent cytotoxic reaction [1-3]

Indocyanine green (ICG), a photosensitizer with a molecular weight of 775 Da, has been used as a diagnostic agent to determine cardiac output, hepatic function and blood flow [4, 5]. ICG has low toxicity and has been approved by Food and Drug Administration (FDA) [6].

Neuroblastoma (NB) is one of the most common malignant solid tumors arising from neural crest cells [7]. The first aim is to inhibite cell proliferation in cancer treatment [8]. For this purpose we investigated whether different laser parameters with different concentrations of indocyanine green (ICG) have cytotoxic and antiproliferative effects on neuroblastoma.

2. Material and methods

Neuroblastoma cell lines (SHSY-5Y) were grown in the Dulbecco modified eagle medium (DMEM), supplemented with 10% fetal bovine serum (FBS), and 1% penicillin–streptomycin. Cells were kept at 37 °C in a humidified incubator with 5% CO_2 .

Plates were divided into 9 main groups as

- control,
- only 25 μ g/ml ICG concentrations,
- only 50 μ g/ml ICG concentrations,
- only laser treatment I (50 J/cm^2),
- only laser treatment II (100 J/cm^2),
- 25 μ g/ml ICG + laser treatment I,
- 25 μ g/ml ICG + laser treatment II,
- 50 μ g/ml ICG + laser treatment I,
- 50 μ g/ml ICG + laser treatment II.

(B-381)

^{*}corresponding author; e-mail: ayseak@erzincan.edu.tr

Fig. 3. PDT treatment in neuroblastoma cells.

25 μ g/ml and 50 μ g/ml ICG concentrations were applied and left for incubation for period of 24 hours. Neuroblastoma cell lines were irradiated with an in-house developed diode laser system ($\lambda = 809$ nm, 70 mW/cm², 50 & 100 J/cm²) in continuous wave operation mode after ICG application. Cell proliferation was measured by XTT assay after light irradiation. The optical density was measured at 450 nm with a microplate reader (Bio-Rad iMark Absorbance Reader). The results of the cell viability test were analysed using One-Way ANOVA technique and graphed as a boxplot in MATLAB. Multiple comparison technique was utilised to analyse these results revealing the groups that have a statistically significant difference.

3. Results

Cell proliferation was decreased in a dose-dependent manner in 25 and 50 μ g/ml ICG concentrations when compared with control. The applied ICG concentrations (especially 50 μ g/ml) had cytotoxic effects for neuroblastoma cell lines.

There was no difference between laser treatment groups (L 50 & 100 J/cm²). However, PDT I and PDT II groups (laser exposure with ICG) showed significant inhibition of cell viability (p < 0.05) (Fig. 1).

4. Conclusion

Photodynamic therapy has been used with several photosensitizers in cancer diagnosis and treatment [9, 10]. Photoactivated ICG is shown to have anti-proliferative effects in colon cancer, breast cancer, pancreatic cancer [11–13]. Our results have showed that all doses of icg may be effective. When ICG is applied with laser, PDT I and PDT II cause cytotoxic effects in neuroblastoma cell lines. Appropriate ICG dose — laser parameter combinations must be determined for each cell type. Different energy densities may cause different effects of pdt on inhibition of cell viability. Results contain primary data of ICG-PDT anti-proliferative effects on neuroblastoma cell line. New treatment approaches such as ICG-PDT are needed to be studied thoroughly to find cancer treatment.

References

- M.-C. Tetard, M. Vermandel, S. Mordon J.-P. Lejeune, N. Reyns, *Photodiagnosis Photodyn. Ther.* 11, 319 (2014).
- [2] T.J. Dougherty, C.J. Gomer, B.W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng, *J. Natl. Cancer I.* **90**, 889 (1998).
- [3] K. Morimoto, T. Ozawa, K. Awazu, N. Ito, N. Honda, S. Matsumoto, D. Tsuruta, *PLOSone* 9, e105173 (2014).
- [4] Y. Morita, T. Sakaguchi, N. Unno, Y. Shibasaki, A. Suzuki, K. Fukumoto, K. Inaba, S. Baba, Y. Takehara, S. Suzuki, H. Konno, *Int. J. Clin. Oncol.* 18, 232 (2013).
- [5] K. Urbańska, B. Romanowska-Dixon, Z. Matuszak, J. Oszajca, P. Nowak-Śliwinska, G. Stochel, Acta Biochim. Pol. 49, 387 (2002).
- [6] R. Radzi, T. Osaki, T. Tsuka, T. Imagawa, S. Minami, Y. Nakayama, Y. Okamoto, J. Vet. Med. Sci. 74, 545 (2012).
- [7] Y. Li, A. Nakagawara, Cells 2, 432 (2013).
- [8] D. Bechet, S.R. Mordon, F. Guillemin, M.A. Barberi-Heyob, *Cancer Treat. Rev.* 40, 229 (2014).

- [9] K. Berg, P.K. Selbo, A. Weyergang, A. Dietze, L. Prasmickaite, A. Bonsted, B.O. Engesaeter, E. Angell-Petersen, T. Warloe, N. Frandsen, A. Hogset, J. Microsc. 218, 133 (2005).
- [10] M.E. Wieder, D.C. Hone, M.J. Cook, M.M. Handsley, J. Gavrilovic, D.A. Russell, *Photochem. Photobiol. Sci.* 5, 727 (2006).
- [11] W. Bäumler, C. Abels, S. Karrer, T. Wei, H. Messmann, M. Landthaler, R.-M. Szeimies, *Br. J. Cancer* 80, 360 (1999).
- [12] W.R. Chen, R.L. Adams, A.K. Higgins, K.E. Bartels, R.E. Nordquist, *Cancer Lett.* 98, 169 (1996).
- [13] W.W. Tseng, R.E. Saxton, A. Deganutti, C.D. Liu, *Pancreas* 27, 42 (2003).