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Solution time of nonlinear constrained optimization problem depends on the number of constraints, decision

variables and conditioning of decision variables space. While the numbers of constraints and decision variables
are external to the optimization procedure itself, one may try to affect the conditioning of the decision variables
space within the self contained optimization module. This will directly affect the ratio of convergence of an
iterative, gradient based optimization routine. Another opportunity for speedup of the solution process in case
of quadratic objective function lies in the chance to eliminate the decision variables least affecting the objective
function, and thus decrease the optimization problem size. Elimination of decision variables is based on the singular
value decomposition of the objective function. Singular values showing up as a result of such procedure indicate
that certain linear combinations of original decision variables do not affect the objective function, and thus may be
eliminated from further deliberations. Also if near singular values are encountered as well, even deeper reduction of
the optimization problem size is still possible, but at a cost in terms of final solution quality. An idea how to improve
the conditioning of decision variables space, and limit the number of decision variables in case of quadratic objective
function using singular value decomposition is presented in this paper. Results of computer tests performed during
minimization of quadratic objective function and subject to quadratic constraints are enclosed and discussed.
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1. Introduction
Solution time of an optimization problem strongly de-

pends on the number of decision variables, constraints
and conditioning of decision variables space. While the
number of constraints may not be changed without af-
fecting the final solution, one may try to affect the con-
ditioning of decision variables space and the number
of such variables via the application of proper numeri-
cal procedure. In the case of quadratic objective func-
tion (1) with positively defined matrix A an applica-
tion of L ·LT (Cholesky) decomposition accompanied by
change of variables suffices [1], but this approach may not
be used in the case of nonnegatively defined matrix A.
In such a situation an application of the singular value
decomposition (SVD) [2] may help. In addition to im-
proving the conditioning of the decision variables space
this procedure may also let the user decrease the num-
ber of decision variables, shall the application of SVD
indicate that matrix A has one or more singular values.
This in turn would mean that certain combinations of
original decision variables do not affect the value of ob-
jective function, and as a result may be dropped from
further analysis thus decreasing the size of decision vari-
ables space:

min
x

F (x) = 1
2x

TAx, A = AT. (1)

One should note that though the SVD procedure it-
self [3–5] may be the single most time consuming element
of the optimization process, it is performed only once at
the beginning of calculations and the time spent on it is
well offset by time gains on following calculations.

2. Solution approach

An application of SVD algorithm to square, symmetric
matrix A yields
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A = UTDU , (2)
where U is an orthonormal matrix (U−1 = UT) andD is
a diagonal matrix containing moduli of eigenvalues of A
ordered by magnitude. If A is rank deficient, at least one
diagonal element of D is equal to zero. Further decom-
position of diagonal matrix D into two components

D = SJS, (3)
where S is a diagonal matrix containing square roots of
respective diagonal elements of A with an exception of
singular values, which are replaced by 1, and J is an unit
matrix, again with an exception of singular value loca-
tions in D, which are replaced by 0. Thus the original
objective function in the optimization problem (1) is re-
placed by

min
y

F (y) = 1
2y

TJy, (4)

accompanied by an appropriate change of variables
y = SUx, x = S−1UTy. (5)

Based on the optimization problem at hand, one may ei-
ther use formulae (5) to express the original constraints
in new variables and switch all further calculations to
the new, conditioned decision variables space, or work
on two decision variable sets in parallel, should the com-
plete transformation prove to be to cumbersome to per-
form. The second approach is tested in current paper,
i.e. when the new vector of decision variables y is deter-
mined, a corresponding vector x is found using formu-
lae (5), values of constraints and constraint gradients are
computed in original decision variables space and trans-
formed back to the conditioned space, where next iter-
ation in search of the optimum solution is performed.
One should note that the whole procedure is fully trans-
parent to the end user of the optimization routines.

The algorithm of the above outlined procedure was im-
plemented as a set of computer routines in Fortran pro-
gramming language, supplemented by externally devel-
oped SVD routine [3].
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3. Test problem

A search for residual stress distribution in an elastic
perfectly plastic body subjected to cyclic loads exceeding
its elastic bearing capacity, based on [2], may be reduced
to solving the nonlinear constrained optimization prob-
lem having quadratic objective function of the type (1)
and quadratic constraints [7–10].

In order to check the accuracy and efficiency of the
proposed extension, the test problem was solved several
times with input data selected so, as to get optimization
problems differing in size (number of decision variables
and constraints), as well as in the decision variables to
constraints ratio. Results representative for the tests per-
formed so far are presented in Table.

TABLESolution calculation times (in seconds).

Case
Decision
variables

Cons-
traints

Iterations
Total
time

Speed
up

Time per
iteration

Ratio
Global
error [%]

STD 232 40 1753 39.20 – 0.0224 – –
SVD1 232 40 327 28.30 1.39 0.0865 3.86 6.2515× 10−4

SVD2 137 40 310 21.60 1.81 0.0697 3.11 6.1927× 10−4

STD 256 47 5288 128.37 – 0.0243 – –
SVD1 256 47 514 37.28 3.44 0.0725 2.98 2.9406× 10−3

SVD2 149 47 985 52.66 2.44 0.0535 2.20 2.9411× 10−3

STD 388 73 61262 1899.90 – 0.0310 – –
SVD1 388 73 1754 368.48 5.16 0.2101 6.78 9.1649× 10−3

SVD2 220 73 1594 175.92 10.80 0.1104 3.56 9.1660× 10−3

In the table above STD denotes that the standard [11]
set of optimization routines was used, while SVD1 de-
notes application of SVD augmented optimization pro-
cedure on full number of decision variables, and SVD2
denotes application of SVD augmented optimization rou-
tines including problem size reduction due to rank defi-
ciency of matrix A. Total time denotes time spent in
optimization routines including the time needed to per-
form SVD decomposition when applicable.

The problem was solved on a 2.53 GHz Intel CoreDuo
CPU equipped PC class computer.

Presented results seem to indicate that time gain due
to application of SVD tends to grow with increasing prob-
lem size, with no loss in accuracy of final results incurred.
This is confirmed by the relative difference between the
reference (standard) and SVD augmented solution inte-
grated over the whole domain and expressed as global
error in the table above.

4. Conclusions

An idea to improve the convergence speed of iterative
gradient solution method through conditioning of the de-
cision variables space and, if possible, limiting the num-
ber of decision variables through application of SVD has
been proposed. Tests performed on practical engineer-
ing problem [10] have shown that total calculation time
gains varied between 40% and 980% depending on prob-
lem size with a very encouraging tendency to increase
with increasing problem size.

Current application of the proposed procedure is lim-
ited to quadratic functions, but the proposed idea is quite
general and the SVD decomposition may be applied to

any objective function, which may be locally approxi-
mated by a quadratic one. Unfortunately, this may be
achieved only at the expense of efficiency, as the SVD de-
composition, the single most time consuming step of the
proposed procedure, would have to be applied after ev-
ery change of the local approximation. This does require
additional testing.
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