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The element-free Galerkin method is one of the most widely used meshfree method in solid mechanics due
to its simplicity and high convergence rate. However, it has some selectable parameters that affect the accuracy
and convergence. The parameters can be listed as size of support domain, number of monomials, type of weight
function, number of integration points in a background cell and value of penalty coefficient. The effects of these
parameters on the accuracy of the element-free Galerkin method solution of the Reissner–Mindlin plate bending are
investigated. A number of case studies with regular and irregular node distributions are solved. The displacement
and moment values at critical points are compared with exact solutions. It is shown that the selectable parameters
have to be carefully selected especially for the analysis of moments.
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1. Introduction

The element-free Galerkin (EFG) method, which was
developed by Belytschko and co-workers [1], is a pop-
ular meshfree method in solid mechanics. The EFG
method employs moving least-square (MLS) approxima-
tion to construct shape functions. It does not require
any element connectivity and the results are not signifi-
cantly affected by the use of irregular node arrangements.
Since MLS shape functions do not possess Kronecker-
delta property, EFG method needs some special tech-
niques such as penalty coefficient [2], Lagrange multipli-
ers [1] for the application of boundary conditions.

In this work, the effects of selectable parameters on the
solution accuracy of EFG method for bending analysis of
the Reissner–Mindlin plates are investigated. The inves-
tigation is carried out using different values of selectable
parameters in the solution and comparison of obtained
results with results of analytical solutions.

2. Element-free Galerkin method

2.1. Moving least square approximation (MLSA)

The MLS approximation for the function of a field vari-
able u(x) in a local domain Ω is defined at a point x as

uh (x) =
∑m

i=1
pi (x) ai (x) = p

T (x)a (x) , (1)

where pT (x) is the vector of monomial basis functions,
aT (x) is the vector of coefficients, x is the position vec-
tor, and m is the number of basis terms. The difference
between the function u (x) and its local approximation
uh (x) must be minimized by weighted discrete L2 norm
to obtain the vector of coefficients a(x):
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J =
∑n

i=1
w (x− xi) [pT (xi)a (x)− ui]

2
, (2)

where n is the number of nodes in the support domain of
point x, ui is the nodal value of u at x = xi, w (x− xi) is
the weight function associated with the influence domain
of node i. The cubic spline and quartic spline weight
functions [2] are used in this work. The minimization of
weighted residual with respect to a(x) at any arbitrary
point x can be written as a set of linear equations.
A(x)a(x) = B(x)Us, (3)

where
A (x) =

∑n

i=1
wi (x) p (xi) p

T (xi),

wi (x) = w(x− xi), (4)

B (x) = [w1 (x) p (x1) ,

w2 (x) p (x2) , · · ·wn (x) p (xn)] , (5)

U s = {u1, u2, u3, · · · , un}T. (6)
If the matrix A is non-singular a(x) can be written as
a (x) = A−1 (x)B(x)U s. (7)

The local approximation uh (x) can be rewritten by sub-
stituting Eq. (7) into Eq. (1):

uh (x) =
∑n

i=1
φi (x)ui = ΦT (x)U s, (8)

where ΦT is the vector of MLS shape functions and it
can be expressed as

ΦT (x) = {φ1 (x)φ2 (x) · · ·φn (x)} =

pT (x)A−1 (x)B (x) . (9)

2.2. Governing equations

The discrete system equation for the EFG method so-
lution of the Reissner–Mindlin plate can be written as

(K +Kα)U = (F + F α) , (10)
whereK is the global stiffness matrix and is obtained by
the assembly of point stiffness matrices
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Kij =

∫
Ω

BT
i DBj dΩ , (11)

in which

Bi =

 0 0 0 φi,x φi,y
φi,x 0 φi,y φi 0

0 φi,y φi,x 0 φi


T

(12)

and D is the elastic material matrix. The Kα is the ma-
trix of penalty factors defined by:

(Kα)ij =

∫
Γu

ϕT
i αϕj dΓ , (13)

where ϕi is a diagonal matrix. If the relevant DOF is
free, the diagonal elements of ϕi are equal to 0, other-
wise equal to 1. The force vector F in Eq. (12) is the
global force vector assembled using the nodal force vec-
tor of

Fi =

∫
Ω

(Luψi)
T
bdΩ +

∫
Ω

(Luψi)
T
tΓ dS, (14)

where ψi is a diagonal matrix of shape functions. The F α

vector shows the forces obtained by the implementation
of essential boundary conditions and can be obtained as

Fαi =

∫
Γu

ϕT
i αuΓ dΓ . (15)

3. Numerical experiments and discussions

To investigate the effects selectable parameters of
EFG method for the Reissner–Mindlin plate bending

problems, two numerical cases are examined: clamped
circular plate under uniform transverse distributed load
and simply supported square plate under uniform trans-
verse distributed load and are shown in Fig. 1.

Fig. 1. (a) Clamped circular plate, (b) simply sup-
ported square plate.

The material properties and pressure values of the
cases are the Young modulus, E = 10920 Pa, the Poisson
ratio, v = 0.3 and P = 1 Pa. The EFG method solutions
are compared with analytical solutions.

The regular node distribution with 817 field nodes
and 768 background cells were used. Table I and Ta-
ble II present the normalized deflection results using cu-
bic spline weight function. In the tables, mBasis and
nGauss refer to number of monomial basis and number
of Gauss points in a background cell, respectively.

The irregular node distribution with 1089 field nodes
and 1024 background cells were used. Table III and Ta-
ble IV present the normalized moment results using quar-
tic spline weight function.

TABLE I

Central deflections wc/
(
pL4/100D

)
using regular node distribution for clamped

circular plate subjected to uniform transverse distributed load.

mBasis nGauss
Dimensionless size of support domain (αs) Exact
2.5 3.0 3.5 4.0 4.5

3 4× 4 0.184962 0.185032 0.185283 0.185462 0.185478 0.184821[3]
5× 5 0.184963 0.185033 0.185283 0.185453 0.185486
6× 6 0.184963 0.185033 0.185288 0.185460 0.185478
7× 7 0.184963 0.185033 0.185281 0.185460 0.185483
8× 8 0.184962 0.185032 0.185285 0.185459 0.185524

TABLE II

Central deflections wc/
(
pL4/100D

)
using regular node distribution for clamped

circular plate subjected to uniform transverse distributed load. αp — penalty
coefficient = 6.

mBasis
Dimensionless size of support domain (αs) Exact

2.5 3.0 3.5 4.0 4.5
3 0.185249 0.185321 0.185573 0.185747 0.185768 0.184821
6 0.185256 0.185264 0.185378 0.185772 0.185841
10 0.012204 0.016623 0.185365 0.185837 0.186014
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TABLE III

Central moments Mc/
(
pL2/10

)
using irregular node distribution for simply supported

square plate subjected to uniform transverse distributed load.

mBasis nGauss
Dimensionless size of support domain (αs) Exact

2.5 3.0 3.5 4.0 4.5
3 4× 4 0.500941 0.510744 0.519388 0.633194 0.772233 0.4789 [3]

5× 5 0.487774 0.498832 0.510473 0.497286 0.535530
6× 6 0.474766 0.478865 0.479829 0.489514 0.502671
7× 7 0.476700 0.476526 0.479432 0.478829 0.480024
8× 8 0.477039 0.477445 0.479317 0.479033 0.479634

TABLE IV

Central moments Mc/
(
pL2/10

)
using irregular node distribution for sim-

ply supported square plate subjected to uniform transverse distributed
load. αp — penalty coefficient = 6.

mBasis
Dimensionless size of support domain (αs) Exact

2.5 3.0 3.5 4.0 4.5
3 0.487777 0.498836 0.510496 0.497278 0.535784 0.4789
6 0.488044 0.470402 0.470146 0.502782 0.509977
10 0.002825 0.454212 0.568492 0.495713 0.498427

4. Conclusion

In this study, the selectable parameters of EFG method
were investigated at different values for the solution of
bending problems of the Reissner–Mindlin plate. It is
shown that the number of Gauss points, type of weight
function, and the use of regular and irregular node distri-
bution does not show any significant accuracy loss for the
displacement results. But, several variations are shown
for the moment results. From the results the values for
the number of monomials (mBasis), the dimensionless
size of support domain (αs), the number of Gauss points
(nGauss), the value of penalty coefficient (αp) can be
suggested as 3, 3.0, 5×5, 1.0×106, respectively. Also, it is
shown that the quartic spline weight function is smoother

than the cubic spline weight function. These values may
not be the optimum values for every situation, however,
in general, give results with sufficient accuracy.
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