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In this study, we consider some of univariate quantile-based robust estimators. We focus on the estimators such
as median, interquartile range, quartile and octile skewness for the Weibull distribution which is one of the most
widely applied probability function because of its versatility and relative simplicity. It is important to use robust
estimators as a measure of distribution properties for analyzing data in the case of contamination with outliers.
For small data sets, it is reported that by introducing kernel estimation for smoothing empirical distribution
function, a reduction in mean square error of estimator is achieved by Fernholz (1997) and Hubert et al. (2013).
In kernel estimation, it is well known that bandwidth selection is more important than selection of kernel density
since bandwidth controls the smoothness of the estimated distribution function. Using simulation studies, we
examine some quantile-based estimators for the Weibull distribution with various sample size. The performance of
estimators is measured by mean squared error under Different outlier contaminated data. We applied this idea in
the case of real data.
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1. Introduction

In this study, quantile-based robust estimators are in-
vestigated for the Weibull distribution. It is known that
the Weibull distribution has wide spread application in
medicine, biology engineering, and as a probability model
it is very common in modeling the problems of the area of
survival and reliability analysis. For this purpose, kernel
estimation is applied to random samples which are taken
from the Weibull distribution for varied parameters in
order to obtain smoothed distribution function. After
that, the mean square error (MSE) of robust estimators
and variances are obtained.

As a quantile-based robust statistics, the median
(med), interquartile range (IQR), quartile skewness
(QS), octile skewness (OS) is considered. We examine
the reduction in MSE for estimators. In the case of
contamination with Different proportion, the behavior of
related statistics is investigated by a simulation study for
random sample of Different size.

The first proposals about kernel smoothing for
distribution functions estimates has been made by
Nadaraya [1] and Azzalini [2]. In the following years,
for small data sets and in the case of outlier, Fernholz [3]
proved that the MSE of the estimators obtained from
the smoothed distribution function is less than theMSE
of estimators obtained from the empirical distribution
function.

For estimators which have discontinuous influence
function, it is declared that kernel smoothing is especially
useful [4]. Hubert et al. [5] stated the results of a simula-
tion study conducted for the kernel smoothing to random
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samples that are taken from a gamma distribution with
various parameters including the cases of contamina-
tion. Additionally, they reported that a considerable de-
crease in the MSE of the quantile based estimators has
occurred.

Quantile function and the definition of the estimators
considered took place in the second section of the study.
In Sect. 3, the smoothing procedure of the empirical dis-
tribution function is explained. In this study, for the
Weibull distribution a simulation study is constructed
to determine bandwidth by minimizing integrated mean
square error (IMSE) of smoothed distribution function.
It is explained in Sect. 4. In Sect. 4.1 the algorithm of
simulation study is given. In Sect. 5 the results of esti-
mators such as MSE, variance, and bias of the related
statistics are tabulated for non-contamination and con-
tamination cases separately. In case of real data band-
width selection procedure is explained and illustrated to
lifetime data in Sect. 6, and finally conclusion takes place
in the last section.

The written algorithm which is used for the Weibull
distribution in this study has a general structure, so it
can be easily applied to other distributions. We want to
use the benefits of the algorithm in order to make similar
studies in general for any distribution.

2. Quantile function

Let {x1, x2, . . . , xn} be an independent and identi-
cally distributed random sample drawn from an abso-
lutely continuous distribution function F (x) with proba-
bility density function f (x). We use the conventionally-
established quantile function

Q (p) = inf {x : p ≤ F (x)} , 0 ≤ p ≤ 1. (1)
Every member of the real line is connected with one quan-
tile function value, since quantile function is the inverse
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of the distribution function. Empirical distribution func-
tion is

Fn (x) = F̂ (x) =
1

n

n∑
i=1

I(−∞, x] (xi) ,

I(−∞,x] (u) =

{
1, u ∈ (−∞, x] , u ≤ x ,
0, u /∈ (−∞, x] , u > x .

(2)

Accordingly, empirical quantile function is defined as:
Qn (p) = inf {x : p ≤ Fn (x)} , 0 ≤ p ≤ 1. (3)

When kernel smoothing is applied, robust quantile-based
estimators with high breakdown point can be achieved
more accurately from smoothed quantile function, since
we can create much more quantile values that is pro-
vided by the order statistics. In this study, some ro-
bust quantile-based estimators such as, median as a lo-
cation estimator, IQR as a scale estimator, QS and OS
as a measure of skewness are investigated for the Weibull
distribution [5, 6].

3. Kernel smoothing

An empirical distribution function estimates the distri-
bution function of a random variable by assigning equal
probability to each observation in a sample. It is dis-
continuous at many points. Kernel smoothing is applied
to achieve a smoother empirical distribution function, so
we have a continuous estimate of distribution function,
which makes it possible to estimate the density of a ran-
dom variable based on an observed sample.

Kernel-based estimator of a distribution function is
given as follows [1]:

F̃n,h (x) =
1

n

n∑
i=1

K

(
x− xi
h

)
, (4)

where K(·) is distribution function of the Epanechnikov
kernel and h is smoothing parameter called the band-
width [7]. If a random variable X has a distribution func-
tion F (x), that is Differentiable twice and has continuous
second derivative, while n → ∞, h → 0, nh → ∞, the
expected value and the variance of the smoothed distri-
bution function estimator F̃n,h (x) is given as follows:

E
(
F̃n,h (x)

)
= F (x) +

1

2
h2f ′ (x)µ2 (k)

+O
(
h2
)
, (5)

V
(
F̃n,h (x)

)
=
F (x) (1− F (x))

n
− 2hf (x) c

n

+O

(
h

n

)
, (6)

where µ2 (k) =
∞∫
−∞

t2k (t) dt and c =
∞∫
−∞

tk (t)K (t) dt.

For the Epanechnikov kernel we have µ2 (k) = 1, the
constant c is 0.2875 [2].

4. Bandwidth determination using simulation

It is known that the choice of the kernel function K (·)
is less important than the choice of bandwidth in ker-
nel estimation [8]. It is common practice to use MSE

for the measure of performance of estimator. IMSE of
smoothed distribution function estimate F̃n,h(x) is given
below

IMSE
(
F̃n,h(x)

)
= E

∞∫
−∞

[
F̃n,h(x)− F (x)

]2
dx. (7)

We designed a simulation study, and obtained the
sampling distribution of the estimator F̃n,h(x). Then
we looked for bandwidth which minimizes the IMSE.
Specifically, we drew 5000 random samples of size 40
for each selected h value. We calculated IMSE over
that sampling distribution and plotted it against h. For
Weibull(1.5, 1) and Weibull(4, 1), Fig. 1 gives plots of
IMSE estimate versus h. IMSE is minimum when h =
0.6 and h = 0.25 for Weibull(1.5, 1) and Weibull(4, 1),
respectively.

Fig. 1. IMSE estimates versus h values.

These particular bandwidth values are used for the
simulation study to investigate the reduction in MSE
and variance of quantile-based estimators.

4.1. Algorithm

Data producing
Random samples are drawn and summary statistics
including order statistics are obtained. The working
interval that covers the range is determined. Work-
ing interval is partitioned such that satisfying the
following requirement:
length of working interval ≤ partition number ∗
step.
This partitioning makes possible to combine results
of simulation study. Distribution function values are
calculated for the selected grid of working interval.

↓
Kernel smoothing
For a drawn sample {x1, x2, . . . xn}, smoothed distri-
bution function estimate F̃n,h (x) is obtained by

F̃n,h (x) = 1
n

n∑
i=1

K
(
x−xi

h

)
x = initial value+ k ∗ step;
K = partitioning number

k = 0, 1, 2, . . . ,K,
where xi is a value of random sample and x is mem-
ber of working interval.

↓
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Bandwidth selection
Draw 5000 random samples of size 40 for ev-
ery selected h value in the interval 0 ≤ h ≤ 2.
hk = 0 + l ∗ (0.01), l = 0, 1, 2, . . . , 200. We obtained
the sampling distribution of F̃n,h (x) for each
selected h value. We estimate the IMSE over the
sampling distribution of F̃n,h (x), in discrete terms,
as follows:
IM̂SE = Diff square+Bias square.

Diff square = 1
r

r∑
i=1

K∑
k=1

(
F̃(n,h),i(xk)− ¯̃Fn,h(xk)

)2
∗

step,
r = replication number
xk = initialpoint + k ∗ step
k = 0, 1, 2, . . . ,K.

Bias square =
K∑

k=1

(
¯̃Fn,h(xk)− Fn(xk)

)2
∗ step,

xk = x+ k ∗ step;
k = 0, 1, 2, . . . ,K.
¯̃Fn,h(xk) is the average of repeated smoothed
distribution function and Fn(xk) is the average of
repeated empirical distribution function. Fn(xk) is
used instead of F (x).

↓
Smoothed estimators
As the smoothed distribution function value for
each sample is known, by controlling, expression∣∣∣F̃(n,h),i(xk)− 1

2

∣∣∣ ≤ ε (ε is chosen to be 1/1000), we
can state the smoothed median for i-th sample, as
mẽd (i) = xk. In similar way, by controlling the ex-
pression

∣∣∣ ¯̃F(n,h),i(xl)− 1
2

∣∣∣ ≤ ε (e.g. ε = 1/1000), we
determine the average of smoothed median asm¯̃ed =
xl. Then, we have the MSE for smoothed me-

dian, mẽd, MSE(mẽd) = 1
r

r∑
i=1

(mẽd (i)−m¯̃ed)
2

+

(m¯̃ed−med (Weibull))
2.

The same approach is used for smoothed quantile
estimates of IQRn, QSn and OSn.

5. Simulation results

Simulation results about quantile-based estimators are
obtained by applying in each case the given algorithm
for two Different Weibull distributions with parameters
Weibull(1.5, 1) and Weibull(4, 1).

We specified h = 0.6 for Weibull(1.5, 1) and h = 0.25
for Weibull(4, 1) which are reported in the first part of
simulation study. We applied the simulation algorithm
in case of 0%, 5%, and 10% contamination. For contam-
ination cases, data were drawn from normal distribution
N
(
µ = 20, σ2 = 1

)
. We chose normal distribution to rep-

resent contamination structure and we believe that it is
good enough to keep track of the performance of estima-
tors for these contamination cases. We draw 1000 sam-
ples for various sizes for each estimator. Here we only
report simulation results of sample size 40 in Tables I–IV.

TABLE I

MSE, variance and bias of medn and Q̃n(0.5) under
Weibull(1.5, 1) and Weibull(4, 1) distributions for 0%,
5% and 10% contamination, respectively.

Cont.∗ Est.∗∗ MSE Variance Bias
Weibull(1.5, 1)

no medn 0.01362 0.01356 0.00723
Q̃n(0.5) 0.01081 0.00985 0.03103

5% medn 0.01775 0.01561 0.04625
Q̃n(0.5) 0.01691 0.01170 0.07216

10% medn 0.02715 0.01829 0.09408
Q̃n(0.5) 0.02999 0.01450 0.12445

Weibull(4, 1)

no medn 0.00256 0.00256 0.00070
Q̃n(0.5) 0.00200 0.00200 0.00073

5% medn 0.00307 0.00277 0.01723
Q̃n(0.5) 0.00256 0.00221 0.01861

10% medn 0.00441 0.00306 0.03684
Q̃n(0.5) 0.00421 0.00255 0.04074

∗contamination, ∗∗estimator

Table I shows 20% reduction in MSE of smoothed
median for uncontaminated Weibull(1.5, 1) i.e. (1 −
(MSE(Q̃(0.5))/MSE(medn)) = 1 − 0.01081/0.01362 =
1 − 0.79 = 0.21). For Weibull(4, 1) this reduction is
also 20%. 5% contamination, MSE of smoothed me-
dian has decreased 5% and 16% for Weibull(1.5, 1) and
Weibull(4, 1), respectively. However, we noted an in-
crease of 10% for Weibull(1.5, 1) under 10% contamina-
tion and 5% decrease forWeibull(4, 1). ForWeibull(4, 1)
we see that consistently similar bias occurs across all sce-
narios.

TABLE II

MSE, variance and bias of IQRn and the IQ̃Rn under
Weibull(1.5, 1) and Weibull(4, 1) distributions for 0%,
5% and 10% contamination, respectively.

Cont. Est. MSE Variance Bias
Weibull(1.5, 1)

no IQRn 0.02380 0.02368 0.01100
IQ̃Rn 0.01880 0.01276 0.07772

5% IQRn 0.04900 0.03716 0.10877
IQ̃Rn 0.05217 0.02366 0.16884

10% IQRn 0.37550 0.30405 0.26731
IQ̃Rn 0.14045 0.04940 0.30175

Weibull(4, 1)

no IQRn 0.32374 0.00392 –0.56553
IQ̃Rn 0.28681 0.00202 –0.53365

5% IQRn 0.29604 0.00491 –0.53956
IQ̃Rn 0.26003 0.00286 –0.50713

10% IQRn 0.46765 0.23573 –0.48158
IQ̃Rn 0.22941 0.01102 –0.46733

Results in Table II shows decrease of 21% in MSE
of smoothed IQR for uncontaminated Weibull(1.5, 1)

i.e. (1 − (MSE(IQ̃R)/MSE(IQRn)) = 1 − 0.01880/
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0.02380 = 1 − 0.79 = 0.21). For Weibull(4, 1) this
reduction is 11%. However, we noted an increase
of 6% for Weibull(1.5, 1) with 5% contamination and
10% decrease forWeibull(4, 1). 10% contamination leads
to 62% and 51% decrease in MSE of smoothed IQR
for Weibull(1.5, 1) and Weibull(4, 1), respectively. For
Weibull(4, 1) we see that consistently similar bias occurs
across all scenarios.

TABLE III

MSE, variance and bias of QSn and the Q̃Sn under
Weibull(1.5, 1) and Weibull(4, 1) distributions for 0%,
5% and 10% contamination, respectively.

Cont. Est. MSE Variance Bias
Weibull(1.5, 1)

no QSn 0.04149 0.04132 –0.01277
Q̃Sn 0.00517 0.00394 –0.03508

5% QSn 0.04058 0.04001 0.02398
Q̃Sn 0.00655 0.00655 0.00005

10% QSn 0.04734 0.04186 0.07399
Q̃Sn 0.01191 0.00960 0.04803

Weibull(4, 1)

no QSn 0.04130 0.04128 –0.00439
Q̃Sn 0.00423 0.00418 0.00744

5% QSn 0.04042 0.03980 0.02501
Q̃Sn 0.00664 0.00551 0.03358

10% QSn 0.04798 0.04330 0.06845
Q̃Sn 0.01442 0.00886 0.07459

From Table III the reduction MSE of Q̃Sn has de-
creased at least 70% in each case.

TABLE IV

MSE, variance and bias of OSn and the ÕSn under
Weibull(1.5, 1) and Weibull(4, 1) distributions for 0%,
5% and 10% contamination, respectively.

Cont. Est. MSE Variance Bias
Weibull(1.5, 1)

no OSn 0.03014 0.02738 –0.05255
ÕSn 0.01185 0.00718 –0.06833

5% OSn 0.03907 0.03883 0.01557
ÕSn 0.01142 0.01141 0.00360

10% OSn 0.13353 0.08885 0.21139
ÕSn 0.01391 0.00975 0.06448

Weibull(4, 1)

no OSn 0.02916 0.02694 –0.04716
ÕSn 0.00741 0.00727 0.01190

5% OSn 0.04626 0.04602 0.01522
ÕSn 0.04233 0.03167 0.10324

10% OSn 0.24224 0.17299 0.26317
ÕSn 0.20298 0.08901 0.33760

In Table IV, when there is contamination the reduction
inMSE of octile skewness has decreased by at most 15%
for Weibull(4, 1). In other cases, the reduction in MSE
has decreased by at least 60%.

6. Real data example

6.1. Bandwidth selection for real data

In this part of the study, the structures which are con-
structed in simulation study and summarized in Sect. 4
and 5, are used for the application of real data problem.
If n → ∞, h → 0, nh → ∞, from Eqs. (5) and (6),
asymptotic integrated mean square error (AIMSE) is
defined as:

AIMSE (h) =

∞∫
−∞

F (x) [1− F (x)] dx

n
− 2hc

n
+
h4R

4

+O
(
h4
)
, (8)

where R is the roughness of f (x), R =
∞∫
−∞

(f ′ (x))
2
dx.

By equating the first derivative of (8) to zero, we see
that AIMSE is minimized at

h0 =

(
2c

R

) 1
3

n−
1
3 . (9)

Here, most striking point is that optimal bandwidth is
inverse proportional to the roughness R. As f (x) is es-
timated by kernel estimation, also the estimate of f ′′ (x)
can be achieved by kernel estimation by Epanechnikov
kernel with

f̃ ′′ (x) =
1

h3dn

n∑
i=1

k′′
(
x− xi
hd

)
. (10)

Since R = −E (f ′′ (X)), we can estimate roughness
of f (x):

R̂ = − 1

n

n∑
i=1

f̃ ′′ (xi). (11)

In general, a plug-in bandwidth determina-
tion rule which is given by Silverman [9] is
hd = 2.34 min

(
σ̂n,

IQRn

1.349

)
n−

1
5 . In this study,

we used bandwidth determination rule as follows:
hd = 2.34 min

(
σ̂n,

IQRn

1.349 , 2.219Qn, 1.192Sn

)
n−

1
5 , where

Qn and Sn are robust scale estimators alternative to
median absolute deviation as a scale parameter [10].

Using the bandwidth hd we estimate the roughness
from (10) and (11), then we calculate optimal band-
width h0 (9) in order to estimate the smoothed distri-
bution function. Consequently, smoothed quantile-based
estimators are obtained.

6.2. Application to real data

This procedure is applied to a real data collected
from register of patients admitted to Başkent Univer-
sity Hospital between January 1, 1990 and Novem-
ber 30, 1992 [11]. In Ref. [11] it was reported that the life-
times of transplanted kidneys in months and 34 failures
had been observed during the study period. Here failure
means that the transplanted kidney was not compatible.

Figure 2 depicts the histogram and density estimation
of kidney lifetime. It appears that the empirical distri-
bution is right skewed and there might be an outlier.
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Fig. 2. (a) Histogram and (b) density estimate for data
of lifetimes.

However, further investigation of the underlying boxplot
fails to confirm this.

In Figure 3, both empirical and smoothed distribution
functions are graphically represented together.

Fig. 3. (a) Estimation of roughness, (b) empirical and
smoothed distribution function of data.

TABLE V

Empirical and smoothed quantile-based estimates for the lifetime data of kidney transplant patients.

estimators Qn (0.125) Qn (0.25) Qn (0.50) Qn (0.75) Qn (0.875) IQRn QSn OSn

empirical 0.52 1.02 4.30 11.65 17.65 0.63 0.38 0.56
smoothed 0.44 1.20 4.32 12.08 17.30 0.88 0.43 0.54

Bandwidth which is used in estimation of roughness
is obtained as hd = 5.11, then we got the estimation
of roughness as R̂ = 0.005. After that we estimated
smoothed distribution function with optimal bandwidth
h0 = 1.49 according to Epanechnikov kernel density.
Both empirical and smoothed estimators that are ob-
tained from empirical and smoothed distribution func-
tion are tabulated in Table V.

We have estimated asymptotic variance of first, sec-
ond and third quantile estimates by obtaining estimate
of density function for the real data. For 0 < p < 1 val-

ues ̂SE (Qp) =
√
V ar (Qp) =

√
p (1− p)/

(
n (f (Qp))

2
)
.

We have obtained ̂SE (Q0.25) = 1.019, ̂SE (Q0.50) =

1.463 and ̂SE (Q0.75) = 3.027. Since there is no out-
lier the empirical and smoothed quartile estimates are
close to each other for this real data.

7. Conclusion
For small data sets, when kernel estimation is used, as

it is expected, a great reduction in MSE of estimators
is achieved. This has occurred in each case for median,
IQRn, QSn, OSn. A considerable reduction in MSE
has appeared for both skewness measures QSn, OSn. For
median, relatively small changes in MSE have occurred.
In case whenMSE decreases, we see that, almost for all,
bias has increased strongly. So, in practice, when kernel
smoothing is used, it is necessary to give more attention
to control bias and to introduce bias reducing methods.

We think that we got reasonable results by applying
the related kernel estimation procedure for the real data

problem. On the other hand, the programs for simulation
studies and application are coded in software R without
using any robust packages.
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