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In this paper, a trust region method for generalized semi-infinite programming problems is presented.
The method is based on [O. Yi-gui, “A filter trust region method for solving semi-infinite programming prob-

lems”,

J. Appl. Math. Comput. 29, 311 (2009)]. We transformed the method from standard to generalized

semi-infinite programming problems. The semismooth reformulation of the Karush—-Kuhn—Tucker conditions using
nonlinear complementarity functions is used. Under some standard regularity condition from semi-infinite pro-
gramming, the method is convergent globally and superlinearly. Numerical examples from generalized semi-infinite
programming illustrate the performance of the proposed method.
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1. Introduction

The article studies a numerical solution method for
generalized semi-infinite optimization problems GSIP.
A problem GSIP is of the type

GSIP : minimize f (x) subject to x € M (1)
with M = {& € R"|g(z,y) < 0 forall y € Y(x)} and
Y(z) ={y € R"|vj (z,y) <0,j € Q}.

All defining functions fgv;,j € Q = {1,...,q}, are
assumed to be real-valued and at least twice continuously
differentiable on their respective domains. In a GSIP
problem, the possibly infinite index set Y () is allowed to
vary with z, but in a standard semi-infinite optimization
problem (SIP) the infinite index set is fixed, that is, we
have Y(z) =Y.

For surveys and recent results about theory and meth-
ods for standard semi-infinite programming let us refer
to [1-6]. For introduction and results in generalized semi-
infinite programming the reader is referred to [6-10].

Many solution methods in finite optimization is based
on the Karush-Kuhn-Tucker (KKT) system, which is, a
necessary first order optimality condition. In this paper,
we use a semismooth reformulation of KKT system, for
GSIP. For SIP, semismooth reformulation of KKT system
is obtained in [6, 11].

1.1. Preliminaries

For a locally Lipschitzian function F' : R — R™ let
OF(z) denote Clarke’s generalized Jacobian at x [12].
F is called semismooth at x € R™ if F' is directionally
differentiable at = and if for all V' € 0F(z) and d — 0

we have

F' (w5 d) = Vd + O (||d]]) (2)
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Furthermore, F is called strongly semismooth at x if F' is
semismooth at x and if for all V € 9F(z) and d — 0
we have

Vd—F'(z;d) = O (||d]). 3)
A function ¢ : R?> — R is called a nonlinear complemen-
tarity problem (NCP)-function if

¥ (a,b) =0 if and only if a > 0, b > 0 and ab = 0.(4)
An important example of NCP function is the Fischer—
Burmeister function

Yrp (a,b) = va* +b* —a—b. (5)

We use NCP function for complementarity conditions in
KKT system.

1.2. Semismooth reformulation of KKT conditions
for GSIP

The lower level problem of GSIP is defined by:
Q (#): xmax g(z,) subject 10 v; (z,4) <0, j € Q.(6)
y m

The main computational problem in semi-infinite pro-
gramming is that lower level problem has to be solved to
global optimality, even if only a stationary point of the
upper level problem is sought. Since we replace lower
level problem by its KKT conditions, lower level prob-
lem must be convex.

Forz € M let Yy (Z) = {y € Y (2)|g(Z,y) = 0} de-
note the set of active indices of z. If z € M is a lo-
cal minimizer of GSIP at which the reduction Ansatz
without strict complementarity (see [13]) and the ex-
tended Mangasarian—Fromovitz constraint qualification
hold, then there exist a p € {0,...,n} and multipliers
;> 0,i€ P={1,...,p}, such that

p

Vi@ + Y mV.L(z,7,5) =0, (7)
=1

/_14203 g('fagl):OaZ€P7 (8)

where £ (z,9",7") = g(27") — 327_, 7, (27").
Next, the upper level first order condition is comple-
mented by a lower level first order condition. In fact,
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since the active indices §* € Yy (Z),i € P are global so-
lutions of Q(Z), under some constraint qualification like
the Slater condition in the lower level problem, there ex-
ist vectors of the Lagrange multipliers 4° € RY such that

q
Vg (2,9°) =Y 7iVyu (2.9°) =0, i € P, )
j:l
¥, 20, v (2.9°) <0, 3v; (2,57) =0,
i€P, jeQ. (10)

Now, with any NCP function %, the solution of upper
and lower level first order condition is seen to be equiva-
lent to finding a zero of the following function:

Vf(z)+ émvxﬁ (z,9%,7")
VY(p, —g(z,y"))

U (pp, —g(@,yP))
q .
V9 (z,y') — Zl ViVyvi(z,y')
=

w(%l, _’Ul(xvyl))

1#(7;7 _U.q(xvyl))

q
Vyg (z,y7) — Zl v Vyvi(@,yP)
=

¢(7f7 —Uu (.’L‘7 yp))

(7§, —vg(2,97))
T is strongly semismooth under our assumptions. Define
some functions as follows:

L(z)=Vf(x)+> Vil (2,9',7"),
i=1

V(z) = (W1 (2) sty ()
wi (Z) :1/1(/1/1’_9 (‘r’yz))a (&S P7

@)= (@ (Z)T)T,
Li(2) = Vyg (2,9") = > _ % Vyv; (2,9°), i € P,

=1
T

2)=(0 )"0 ()")

;i (2) = (i1 (2),.- tig (2)) ", i € P,

Yij (2) = (v}, —vj (z,9")), i€ P, j€Q. (12)
1.3. FTR algorithm

In this section, a filter trust-region (FTR) algorithm is
presented to solve T (z) = 0. Let F (z) = T (2)" T(2)
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be the merit function. In order to use a filter tech-
nique, we define the function 6 as follows: 6(z) =
(61 (=) 02 (2) B (2) 04(2)) with 6y (2) = | L(=)]],62 () =
18,03 (2) = )60 () = (B()]|. A fitber is a
list F' of 4-tuples of the form (0 k,...,04) such that
0 < 0;,; for at least one j € {1,2,3,4}. A new trial
iterate z,': is acceptable for the filter F' if and only if for
all 0, = 0 (z) € F, there exists j € {1,2,3,4} such that
0; (z4) <050 — 70101, 16511, (13)

where vy € (0,%) is a small positive constant and

S(16u]1, |65 1) = min||6,]|, |65 || If a new trial point z; is
acceptable we simply perform the operation F' := FUG,‘:.
From a current iterate zj one computes a trial step dj
by solving a system of linear equation

1
(WEWk + h) d=-W;T(z), (14)
k
thus avoiding solving a quadratic programming subprob-
lem with a trust region bound.
Algorithm [14]
Step 1. Let 2, € RN,hy > 0, > 0,0 < p < 1,
0<v<land F=0,k=1.
Step 2. Choose Wy, € OT (z1). If |WIT(z)| < e,
stop.
Step 3. Solve (W,;FWk + hl—k) d = —-W[IT(z) to obtain
dy. Set 2:];L = zp + dg.

F(zi)=F(z)
F(zr)—qr(dr)

Aredyr __

Pred. = where

Step 4. Calculate pr, =
ar (d) = 3||T (2x) + Wid|>.

Step 5. If 0,‘: is not acceptable for the current filter, go
to Step 6. Otherwise, set zpy1 = z,j (called a succesful
iteration) and go to Step 7.

Step 6. If pr, > po, then set zjp41 = z,j', hr+1 = 2hg,
and go to Step 8. Otherwise, set hy := %hk and go to
Step 3 (called inner cycle).

Step 7. If pr > po, then set hyy1 = 2hg, and go
to Step 8. Otherwise, add 0,': to the filter F'$ and set
hit1 = %hk, and go to Step 8.

Step 8. Set k :=k + 1 and go to Step 2 (called outer
cycle).

Under convexity of lower level and conditions for the
Clarke subdifferential regularity of generalized Jacobian
at solution point (see [15]) it can be shown that every
accumulation point of the sequence z is a solution of
T (z) = 0 and thus a stationary point of GSIP. More-
over, it is also possible to show that the algorithm is su-

perlinearly convergent under a bound condition on ||d||
(see [14]).

1.4. Numerical results

The Algorithm is implemented in Matlab 7.8.
Throughout the computational experiments, the param-
eters used in the algorithm are h; = 10, ¢ = 1079,
po = 0.1, 79 = 0.001. The algorithm is terminated when
IWET ()] < 10°°.

Example 1. In a general design centering problem,
the aim is to maximize some measure (e.g., the volume
Vol(B(x))) of a body B (x) under the constraint that
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B (z) is contained in a given fixed body G. Let fixed
body is given by G = {y € R?|g (y) < 0} with

T
Y1 3
g(y) = (—yl—y§’4+y2—47—y2—1) . (15)

The GSIP formulation of the general design centering
problem is as follows:

max Vol (B(x)) s.t. g(y) <0Vy € B(x). (16)

Problem 1. Consider the problem of finding the largest
disc with free center and radius inscribed in G. We then
have n = 3 and B(z) = {y € R|(p—21)° +
(y2 — 22)° — 22 < 0}, Vol (B(z)) = wmz2. The FTR
method obtains the optimal value 1.8606 after 5 it-
erations within 0.44 s of CPU time with ||T(Z)|| =
5.1023 x 1077,

Problem 2. The aim is to find the largest ellipse with
free center and axis lengths inscribed in G. We have

4 and B(a?) _ {y c R2|(91;§C1)2 + (92;2962)2
—1 <0}, Vol (B (z)) = mzgxy. The FTR method ob-
tains the optimal value 3.484 after 7 iterations within
0.53 s of CPU time with ||T(2)|| = 1.3814 x 107°.
Problem 3. Consider the problem of finding largest
ellipsoid in a given simple polyhedron G. The ellip-

soid is defined by B(x) = {y € R2|(y1;§1)2 + (y2;§2)2
z 2

+ (7’3;# —1<0}, Vol (B (z)) = §mzaz5w6. The FTR
methO(ﬁ‘l obtains the optimal value 11890 after 8 iterations
within 0.61 s of CPU time with || T(2)| = 3.1045 x 10~ 7.

Problem 4. Let us find the largest simple diamond
inscribed in a given simple polyhedron. The dia-
mond is described by B(x) = {y € R3v(x,y) < 0}
where v (z,y) = (v1(x,y),...,v16 (x,y) v17(2Y))
with wv1,...,vs defines upper planes, wvg,...,v1g de-
fines lower planes and wvi7; is the capping plane for
diamond.  The volume is given by Vol (B (x)) =
8 tan () [xg (L - A) (23 — 2a11)? (7 —

The FTR method obtains the optimal value 1.398
after 5 iterations within 0.25 s of CPU time with
|T(2)| = 9.8142 x 1078.

Example 2. In robust optimization problems the data
are uncertain and only known to belong to some uncer-
tainty set which may be taken as infinite index set in
semi-infinite programming. The following robust portfo-
lio optimization problem is originally taken from [16].

Problem 5. Let le be invested in a portfolio comprised
of K shares. At the end of a given period the return of
share ¢ is y; > 0. The goal is to determine the amount x;
to be invested in share ¢, i = 1,..., K, so as to maximize
the end-of-period portfolio value yTz. GSIP formula-
tion is

n =

K
maxzs.t. z—y oz <0VyeY(x), Zml =1,
“Y i=1
x>0, (17)

K
where Y (x) = {y € RE| Y
i=1

K2

weg)? < @<x>}, O(x) =
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K 2
(14 - 3))

i=1

Here, the uncertainty set Y (z) depends on 2 in which

the risk aversion of the decision maker depends on the
point . The columns of Table is labelled as follows: K is
the number of shares, ov is the optimal value, |T(2)| is
the Euclidean norm of T'(z) at the last iteration point,
CPU is the CPU time for iterations in seconds, and iter
is the number of iterations.

TABLE
Results of FTR method for optimal portfolio problem.

K ov TG CPU iter
10 0.7033 3.1265 x 1077 0.39 7
50 0.9638 1.2811 x 1078 0.54 9
100 1.0259 3.1504 x 107 1.67 13
150 1.0535 7.6355 x 1077 5.12 19

It can be checked that in the problems in Example 1
and Example 2 strict complementarity holds in the up-
per and lower level problems, so that we actually have a
smooth system. Now, for an illustration of the case that
strict complementarity is violated in the upper level or
lower level, we give the following examples from GSIP.

Problem 6. Let us consider the following GSIP from [7]:

mina? + 23 s.t. 25 —y <0 Vy € YV(2)

where Y(z) = {y € R|lz1 <0,—2z1 —y < 0}.

Note that the strict complementarity is violated in the
upper level. T'(z) is nonsmooth at the solution. The FTR
method obtains optimal value 0 after 5 iterations within
0.16 s of CPU time with ||T(2)|| = 1.7023 x 1075.
Problem 7. Let us consider the following GSIP:

minz? + 22 st (y1 — 21)° — (y2 — 22)> <0
Yy € Y(x) where Y (z) = {y € Rly1 —x1 <0,

Y2 — x2 < 0}.
Note that the strict complementarity is violated in the
lower level. T'(z) is nonsmooth at the solution. The FTR
method obtains optimal value 0 after 6 iterations within
0.17 s of CPU time with ||T(2)|| = 3.5123 x 107"
Problem 8. Let us consider the following GSIP:

. 1
minz? + z3 + 22 s.t. — 3 (y1 — 21)° = (y2 — x2)°

—x3 < 0Vy € Y(z) where Y (z) = {y € R?| —

—yp — 21 < 0,—yp — 32 < 0,95 + 95 — 1 <0}

The strict complementarity for both levels is violated
at the solution. The FTR method obtains optimal
value 0 after 5 iterations within 0.18 s of CPU time with
|1T(2)| = 1.5223 x 105.

In the numerical examples, ¥min(a,b) = —min {a,b}
NCP function is also tested and it is observed that the
performance of the method does not change significantly
if Ypp is replaced by ¥min. Moreover, it is also observed
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that computational results are not very sensitive to the
choice of the parameter h.

2. Conclusion

In this paper a filter trust region method is applied for
solving the generalized semi-infinite programming prob-
lems. An advantage of the method is that at each iter-
ation, only a system of linear equations is solved to get
search direction. We point out that to get feasible points
lower level problem must be convex. We transformed the
method from standard to generalized semi-infinite pro-
gramming problems. For convergence Clarke subdiffer-
ential regularity of generalized Jacobian at the solution
point (for conditions see [15]) is needed and it holds un-
der standard conditions from semi-infinite programming.
In the approach in [14], strict complementarity is a part
of their assumptions. We also point out that nonsmooth-
ness is caused by a possible violation of strict comple-
mentarity slackness in the lower level or/and in the upper
level. Comparing the results of FTR method for common
problems in [13] shows that the proposed method is com-
parable to given paper in computational effort. For fu-
ture work more sophisticated numerical examples should
be presented. However, in the case of more variables
(e.g. design centering), the system of semismooth non-
linear equations is large-scale and ill-conditioned. As a
future work, preconditioning techniques can be consid-
ered to solve mentioned systems.
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