
Vol. 128 (2015) ACTA PHYSICA POLONICA A No. 2-B

Special issue of the International Conference on Computational and Experimental Science and Engineering (ICCESEN 2014)

The Modeling and Hardware Implementation
of Semiconductor Circuit Elements by Using ANN and FPGA

R. Tuntas∗

Yuzuncu Yil University,
Ercis Technical Vocational School of Higher Education, Electronic and Communication Technologies, Van, Turkey

This study, the modeling and hardware implementation of semiconductor circuit elements very frequently used
in electronic circuits are carried out by using artificial neural networks and field programmable gate array chip. Ini-
tially the artificial neural network models obtained has been written in very high speed integrated circuit hardware
description language (VHDL). Then, these configurations have been simulated and tested under ModelSim Xilinx
software. Finally, the best configuration has been implemented under the Xilinx Spartan-3E FPGA (XC3S500E)
chip of Xilinx. The modeling of electronic circuit elements is very important both in respect of engineering, and
in respect of practical mathematics. The main aim is to shorten the simulation time and to examine the real
physical system applications easily by using the model elements instead of using the ones used in real applications.
The effectiveness of the implemented artificial neural network models on field programmable gate array was found
successful.

DOI: 10.12693/APhysPolA.128.B-78
PACS: 07.05.Mh, 85.30.De, 85.40.Bh

1. Introduction

The field programmable gate array (FPGA)-based ap-
proach employs the advantages of both hardware and
software models. FPGAs have many consistent advan-
tages such as reliable, flexible, fast response rapid pro-
totyping, adaptation, reduced cost, simplicity of design
and programmable architecture [1–3]. FPGA model can
be easily reprogrammed and is completely customizable.
VHDL is one of the most wide techniques for program-
ming hardware [4]. The usage of VHDL provides a num-
ber of advantages, such as speed, high capacity and re-
peat designs [5, 6]. Metal oxide semiconductor field ef-
fect transistor (MOSFET) is commonly used in analogy
and digital circuits. MOSFET is a transistor used for
amplifying or switching electronic signals. It is the fun-
damental building block of digital, analogy, and memory
circuits. Artificial neural networks (ANNs) have been
commonly used in many fields for solving the difficult
and complex problems. The most widely used ANN is
the multi-layer perceptron (MLP) [7, 8]. The parallel
structure of the neural network is very important feature
for real-time implementations. FPGA-based application
is proper for parallel realizations and is a good solution
for the complex problem. In literature, there are various
artificial neural network applications on FPGA [9, 10].

In this study, intelligent predictors for MOSFET are
proposed and applied into FPGA Xilinx Spartan-3E
FPGA (XC3S500E). A MLP has been used for mod-
elling MOSFET. The intelligent ANN-MOSFET model
obtained has been written in VHDL. Configurations ob-

∗e-mail: rtuntas@hotmail.com

tained have been simulated and tested under ModelSim
Xilinx software. The best configuration has been imple-
mented under the Xilinx Spartan-3E FPGA (XC3S500E)
chip of Xilinx.

The rest of the paper is organized as follows. Section 2
provides a brief overview on the theoretical considera-
tions. Section 3 presents methodology and implementa-
tion. Results and discussion are demonstrated in Sect. 4.
Finally, Sect. 5 also reports the conclusion.

2. Theoretical considerations

FPGAs are integrated circuits which provide flexibil-
ity and reconfiguration advantages for supporting the de-
sign and production of digital systems. It can be pro-
grammable by the user. An FPGA is a semiconductor
electronic device that contains internal components such
as gates and multiplexers. These devices utilize the hard-
ware description language (HDL) and VHDL program-
ming language.

The artificial neuron is the most fundamental compo-
nent of the neural network. The neuron computation
methods consist in calculating the pondered sum func-
tion and updating the state of the neuron with applying
the activation function. Neuron computation methods
are carried out in three stages. These stages consist of
artificial neuron implementation, data representation and
sigmoid activation function approximation. The various
steps for the practice of the ANN on FPGA are presented
in the following subsection.

The processing of the multiplication and addition of
parallel inputs and weights is done in the first stage.
The second stage is the nonlinear sigmoid function for the
output signal. For the first stage, several types of adders
can be used to achieve the weighted sum of states: com-
binatorial, in series, dynamic, carry look ahead, Manch-

(B-78)

http://dx.doi.org/10.12693/APhysPolA.128.B-78
mailto:rtuntas@hotmail.com


The Modeling and Hardware Implementation of Semiconductor Circuit Elements. . . B-79

ester, Wallace tree, etc. [11]. Likewise, several ways can
be used to realize the multiplication, the mostly used
are: in serial, serial/parallel and completely parallel.
The multiplier–accumulator (MAC) is carried out by a
multiplier related to an adder looped on it in order to
acquire an accumulation.

There is a need of signed real numbers for the compu-
tation of neural networks. The fixed-point representation
and the floating point representation are used to define
the position of the decimal point. The floating point is
more dynamic than the fixed point. It allows the en-
coding of a greater number of real values for the same
number of bits [12]. The fixed-point representation is
preferred in various applications. Fixed-point arithmetic
is used for encoding the parameters and performing the
computations [13]. In this study, we have chosen a fixed-
point representation of 18 bits (9 bits for integer part and
9 bits for real part). This facilitates the MAC realization
which is the main element of the neural network [14].

The direct application of the sigmoid activation func-
tion on FPGA is very difficult. It is because the non-
linear sigmoid function has an infinite exponential se-
ries. To approximate the sigmoid function with the use
of FPGA design, there are three practical approaches
consisting of direct approximation, lookup table approx-
imation and piece-wise linear approximation. In this
study, we have chosen the direct approximation ap-
proach. Direct approximation approach consumes less
memory space and has better precision.

3. Methodology and implementation

In this section, a software and hardware design method
is described to implement the ANN-MOSFET model
on a FPGA chip. This initially an intelligent (ANN–
MOSFET) model developed is written in VHDL. In the
next step, these configurations are simulated and tested
under ModelSim Xilinx software. Then the best con-
figuration is implemented under the Xilinx Spartan-3E
FPGA (XC3S500E) chip of Xilinx. Flow diagram of

Fig. 1. The flow diagram of the proposed methodology
for developing ANN-MOSFET model.

the proposed methodology for developing the ANN–
MOSFET model is shown in Fig. 1.
3.1. ANN-based modelling and simulation for MOSFET

A feed-forward ANN architecture is used for identifi-
cation of the MOSFET. The input–output data sets for
ANN model training are obtained based on the character-
istic values of the simulink model of the MOSFET circuit.
The input data to ANN model for MOSFET are the gate-
source voltage (Vgs), drain-source voltage (Vds), thresh-
old voltage (Vth) and gain constant (K), while the out-
put data are the drain-source current (Ids) of MOSFET.
The ANN model of MOSFET is formed by using the soft-
ware Matlab Ver. 7.9.0.529 (R2009b). For this, the num-
ber of hidden layers and the number of neurons within
these layers are optimized through the training process.
In this study, for the training process, the mean square
error (MSE) performance criterion is used. A proper
computing program is applied for the prediction of the
MOSFET based on the Levenberg–Marquardt (LM) al-
gorithm. To obtain the best performance, the struc-
ture of the ANN and training parameters are obtained
as shown in Table after several different experiments.

TABLE

ANN architecture and training parameters.

The number
of layers

3
activation function
on the layers hidden

tangent sigmoid

Neuron on the
layers input

4
activation functions
on the layers output

linear

Neuron on the
layers hidden

5 training parameters Levenberg–Marquart

Neuron on the
layers output

1 sum-squared error 0.000001

Fig. 2. The neuron architecture of ANN–MOSFET.

A database of 1500 patterns is divided into two parts
to constitute the intelligent predictor of the MOSFET.



B-80 R. Tuntas

A dataset of 1200 patterns are used for the learning
phase, and other dataset of 300 patterns are used for the
testing phase, for the implementation of the intelligent
predictor on the FPGA. After the biases and weight val-
ues of the ANN were obtained, these values were stored
in ROM. In the same manner, previously obtained in-
put data from mathematical model are stored in RAM.
The neuron architecture, which is the essential element
for application of ANN–MOSFET based on VHDL sim-
ulation is shown in Fig. 2.

3.2. FPGA-based implementation for MOSFET

The design of an integrated circuit can be made at
four abstraction levels. Short description of these four
abstraction levels can be summarized as follows.

First, at behaviour level, suitable VHDL models are
improved. Second, at the register transfer level, circuit
models are formed. Then, at physical abstraction level,
synthesized VHDL models of the predictor structure are
performed and tested with simulation. After the latest
circuit behaviour is validated, the FPGA is synthesized
and configured in a private apparatus. The application of
online training algorithms, the obtaining of the activation
function and the coefficient values of connection weight
are the most important for hardware implementation of
neural network (NN). For constructing of the NN, the
elementary neuron used in this study is created as follows.

Neuron inputs, previously written to the block RAM,
are read from the RAM memory. Likewise, the weights
and biases values, previously written to the block ROM,
are read from the ROM memory. For the basic neuron
computation, firstly, the multiplication result of the neu-
ron input and weight are obtained. In the next step,
a bias value is added to them (adder and multiplier).
And then, results of these processes are subjected to a
unit that approximates an activation function tansig. Fi-
nally, activation function generates the neuron output
by processing the results of these processes. The basic
neuron computation scheme in neural networks based on
VHDL is shown in Fig. 3.

Fig. 3. The basic neuron computation scheme in neu-
ral networks based on VHDL.

4. Results and discussion

This section consists of two subsections. The first
one concerns with the VHDL simulation results on Mod-
elSim while the second section deals with the FPGA-
implementation of the developed ANN–MOSFET model.
The block diagram of intelligent model in this study is
shown in Fig. 1. The intelligent model structure is com-
posed of two stages, intelligent model with software and
intelligent model with hardware.

In software stage, firstly, the ANN architecture of
MOSFET is optimized according to the number of used
hidden layers and the number of the neurons within these
layers. Then the obtained weights and bias are recorded
for the configuration of the ANN model of MOSFET on
the FPGA. In this study, the software version 10.2c of
Xilinx is used for obtaining the VHDL source code. For
this, proper computing programs were created by using
the VHDL. After the best architectures are created in
VHDL, these configurations is simulated and tested un-
der ModelSim Xilinx software.

Fig. 4. The hardware used for implementation.

Then in hardware stage, the best configuration is im-
plemented into FPGA hardware board using a Xilinx
Spartan-3E FPGA (XC3S500E) from Xilinx. For this,
firstly, the proper computing program files written in
VHDL for intelligent ANN model are embedded into
FPGA hardware board to make them operative. Then
the experimental realization of the electronic hardware
circuit is implemented and tested. A picture of the ex-
perimental system of the electronics hardware circuit is
shown in Fig. 4. Furthermore, for different parameter val-
ues, the comparisons between the ANN–MOSFET model
implemented on FPGA with experimental output signals
are shown in Fig. 5.

As shown in the results obtained, there is a good
agreement between experimental data (Ids) and ANN–
MOSFET model data (Ids) based on FPGA. The sta-
tistical value of the correlation coefficient r is obtained
between 97% and 99%, which is very satisfactory. These
results show the effectiveness of the implemented ANN–
MOSFET model on FPGA. In comparison with related
study the following results were obtained.



The Modeling and Hardware Implementation of Semiconductor Circuit Elements. . . B-81

Fig. 5. The comparison between actual output and im-
plemented on FPGA for Vg = 2, 4, 5, 6, Vth = 1.7,
gain = 5.

The first comparison item is implementation area.
The proposed FPGA-based intelligent hardware imple-
mentation [7, 10–13] is very suitable method for the semi-
conductor circuit elements.

The second comparison item is performance compar-
isons of the related study. The proposed method gives
better results than the other traditional methods in
terms of lower cost, rapid processing, and high effi-
ciency when comparing the software and hardware ap-
plications [2, 5, 14]. This is because the FPGA and ANN
have very fast parallel computation capabilities.

The third comparison item is the reconfigurations fea-
tures of electronic devices. The execution time and hard-
ware space used is excessively better on FPGA [7, 9,
10, 13] when comparing the classical electronic chips.
FPGA chips have endless reconfigurations advantages ac-
cording to ASIC’s, CPLD’s or DSP’s.

5. Conclusion

In this paper, intelligent predictors for MOSFET are
proposed and applied into FPGA Xilinx Spartan-3E
FPGA (XC3S500E). The special-purpose hardware with
FPGA programming can be used for very wide appli-
cations. FPGAs have the speed, security, and parallel
processing and reconstruction ability. The designs made
with FPGA based on ANN have enormous advantages
according to VLSI in terms of time and cost. The imple-
mentation of artificial neural networks with FPGA pro-
vides flexibility in the programmed systems. The faster
it converges, the more accurate results and the accept-
able generalization for the system modelling are demon-
strated by comparing experimental data with test results.
The results indicate that the FPGA architectures are a
good technique for MLP hardware applications.

References

[1] T.A. York, Microproc. Microsyst. 17, 371 (1993).
[2] D.K. Iakovidis, D.E. Maroulis, D.G. Bariamis, Mi-

croproc. Microsyst. 31, 160 (2007).
[3] J. Li, D. An, L. Lang, D. Yang, Proc. Eng. 29, 2633

(2012).
[4] K. Kompton, S. Hauck, ACM Comput. Surv. 34,

171 (2002).
[5] J. Lu, L. Jing, Proc. Eng. 16, 858 (2011).
[6] G. Krampl, M. Rona, Microelectron. J. 33, 855

(2002).
[7] P. Ferreira, P. Ribeiro, A. Antunes, F.M. Dias, Neu-

rocomputing 71, 71 (2006).
[8] S.K. Mandal, S. Sural, A. Patra, IEEE Trans. Com-

put. Aid. Des. Integr. Circ. Syst. 27, 188 (2008).
[9] D. Shen, L. Jin, X. Ma, Lect. Notes Comput. Sci.

3173, 988 (2004).
[10] O. Polat, T. Yıldırım, Digit. Sign. Proc. 20, 881

(2010).
[11] H. Mekki, A. Mellit, H. Salhi, B. Khaled, AIP Conf.

Proc. 1019, 211 (2008).
[12] S. Saadi, A. Guessoum, M. Bettayeb, Microproc. Mi-

crosyst. 37, 52 (2013).
[13] S. Li, M. Moussa, S. Areibi, Canad. J. Electric.

Comput. Eng. 31, 31 (2006).
[14] H. Mekki, A. Mellit, S.A. Kalogirou, A. Messai,

G. Furlan, Prog. Photovolt. Res. Appl. 18, 115
(2010).

http://dx.doi.org/10.1016/0141-9331(93)90059-G
http://dx.doi.org/10.1016/j.micpro.2006.02.013
http://dx.doi.org/10.1016/j.micpro.2006.02.013
http://dx.doi.org/10.1016/j.proeng.2012.01.363
http://dx.doi.org/10.1016/j.proeng.2012.01.363
http://dx.doi.org/10.1145/508352.508353
http://dx.doi.org/10.1145/508352.508353
http://dx.doi.org/10.1016/j.proeng.2011.08.1166
http://dx.doi.org/10.1016/S0026-2692(02)00092-7
http://dx.doi.org/10.1016/S0026-2692(02)00092-7
http://dx.doi.org/10.1016/j.neucom.2006.11.028 
http://dx.doi.org/10.1016/j.neucom.2006.11.028 
http://dx.doi.org/10.1109/TCAD.2007.907284
http://dx.doi.org/10.1109/TCAD.2007.907284
http://dx.doi.org/10.1007/978-3-540-28647-9_163
http://dx.doi.org/10.1007/978-3-540-28647-9_163
http://dx.doi.org/10.1016/j.dsp.2009.10.013
http://dx.doi.org/10.1016/j.dsp.2009.10.013
http://dx.doi.org/10.1063/1.2952981
http://dx.doi.org/10.1063/1.2952981
http://dx.doi.org/10.1016/j.micpro.2012.09.013
http://dx.doi.org/10.1016/j.micpro.2012.09.013
http://dx.doi.org/10.1109/CJECE.2006.259201
http://dx.doi.org/10.1109/CJECE.2006.259201
http://dx.doi.org/10.1002/pip.950
http://dx.doi.org/10.1002/pip.950

