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Translating Concepts of State Transfer to Spin-1 Chains
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State transfer is a well-known routine for various systems of spins- 1
2
. Still, it is not well studied for chains

of spins of larger magnitudes. In this contribution we argue that while perfect state transfer may seem unnatural
in spin-1 systems, it is still feasible for arrays of V-type three-level atoms. Tomography of such 1D array is also
shown to be possible by acting on one atom from such an array.
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1. Introduction

Secure cryptographic key distribution [1] and quantum
computation [2�4] are just two of many prospective appli-
cations of quantum information processing (QIP). While
these possibilities have been intensively explored for en-
sembles of two-dimensional quantum systems, relatively
little work has been done on higher-dimensional elemen-
tary subsystems. This seems to be so in spite of the
facts that quantum cryptography with larger alphabets
may be more robust against noise [5], and that in quan-
tum computing, higher dimensional systems may open
the way to more e�cient implementation of some proto-
cols or realising multi-valued logics problem. We also like
to stress more fundamental features of high-dimensional
Hilbert spaces. For example, the Kochen�Specker the-
orem [6] cannot be formulated for qubits, the set of all
states has a far more complex structure (which is not
fully still recognized).
It is hence relevant to study more problems of uti-

lizing higher-dimensional systems, e.g., qutrits � with
three distinct levels, as in spin-1, in terms of their useful-
ness QIP. In this contribution we consider one of the most
basic challenges, namely distribution of qutrit states.
We want to discuss it in the fashion of transferring a
state through a chain of nearest-neighbor coupled spins.
This approach was suggested by Bose [7]. In the original
proposal, a state to be transferred is initialized at one
end of a chain of spins- 1

2 coupled by Heisenberg or xx
interaction subject to free evolutions, and the strategy is
simply to wait until the �delity of the state of the last
spin to the one we uploaded is acceptably high. Such a
time is predicted theoretically for the used chain. While
later it was shown that Heisenberg interaction (without
local magnetic �elds) cannot be used to perfectly per-
form this task [8], in general, for xx interaction it was
noticed [9] that in certain subspaces the whole chain can
be seen a single large spin, with inter-site coupling acting
as a transverse magnetic �eld. The state of the chain is
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then rotated, leading to perfect mirroring, i.e., transfer of
the information from one end to the other. Then, more
general conditions for mirroring were formulated [10, 11],
and more importantly, it was noticed that one does not
need to perform additional actions, such as chain ini-
tialization [12], or even remote collaboration [13, 14] to
achieve perfect �delity. Also, protocols have been pro-
posed to attain perfect or almost perfect transfer with
an arbitrary chain, both with single [15] and double in-
frastructure [16]. In this context, later results on tomog-
raphy of such chains gain on importance. Burgarth and
Maruyama [17] have shown that coupling constants and
magnetic �elds of any xxz spin- 1

2 chain can be estimated
by acting on the �rst spin only, while DiFranco et al. [18]
demonstrated that for xx chains these parameters can
be estimated without the state of the whole chain being
initialized. Combination of these two methods allows to
estimate the topology of nonlinear systems of spins [8].

Let us investigate which of these concepts can be trans-
lated to the language of spins-1 (or, in general arbitrary
spin magnitudes). Our motivation is that, contrary to
a common belief, an in�nite Hilbert space dimension is
not a valid classical limit. In fact, it permits stronger
deviation of quantum systems from classical behavior, as
mentioned above.

The problem of transferring an unknown quantum
state of any dimensionality has been discussed already
in, e.g., Ref. [19], where the authors demonstrate a high-
�delity transfer over chains of spins, each of them largely
exceeding the dimension of a transferee. However, their
solution uses the original approach of Bose, with non-
periodic evolution, and waiting for �the optimal time� of
transfer. In fact, this optimal time is not discussed in
Ref. [19], and regime of a small ratio between the end-
of-the chain coupling constants and the others (unmod-
ulated) suggests it to be considerably long. The scheme
is also expensive in terms of infrastructure being used �
the larger magnitude of the chain constituents, the bet-
ter the �delity. On top of that, only three and �ve-site
chains are considered in Ref. [19]. It is hence di�cult to
comment on the performance in function of the length of
the chain. Here, we aim in perfect transfer of a higher-
dimensional state by a minimal infrastructure.

(3)
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2. Theory

First, we study state transfer in chains (Heisenberg-
like-coupled) of spins-1. This approach to the problem
seems to be natural, as total angular momentum L of
multiple spins are segregated by their parity-states. This
feature plays a crucial role in state mirroring, which hap-
pens in spatially symmetric systems when we can gener-
ate a π phase di�erence between odd and even compo-
nents of the states. Notions of parity refer here to the
behavior of a state under the operation of inversion with
the middle of the chain. This requires having, up to an
additive and multiplicative constants, odd eigenenergies
in the odd part of the Hamiltonian and even in the even
one. One immediately notices that this is not possible to
realize a two-site SWAP gate (which is a primitive of any
perfect state transfer routine) with this interaction: even
quantiplets are eigenstates of the Heisenberg interaction,
S1 · S2 (single subscripts of spin operators denote the
particle, double � the particle and the direction) with
eigenvalues 1, odd triplets � with −1, and an even sin-
glet � with −2. However, we get the desired property
if we combine the standard and the squared Heisenberg
interactions

h1,2 =
1

2

(
S1 · S2 + (S1 · S2)

2
)
. (1)

Indeed, e iπh1,2 is a SWAP gate. The next quick bench-
mark for the possibility of building a mirroring chain is
to test mirroring properties of a three-site chain

h1,2,3 = h1,2 + h2,3, (2)

since a certain symmetry of the system is a key feature
of all mirroring systems. This test is failed by this can-
didate, with

〈100|e i th1,2,3 |001〉 =
1

6
(e i t − 3e3 i t + 2e4 i t), (3)

(|1〉, |0〉, |1̄〉 are eigenstates of S·,z with respective eigen-

values 1, 0,−1) reaching only
√

3
4 ei

5π
6 for t = 2π

3 . Still,
free evolution of analogous states of four states governed
by h1,2 + h2,3 + h3,4 is irregular, which gives prospects
for applying the bucket scheme.

3. Results

To �nd the analogue of an xx chain for spins- 1
2 , we

consider few types of interaction. In Table we list their
spectra.
Table shows that not a single of these interactions is

by itself suitable for realizing perfect mirroring. One of
two things happen: either we �nd eigenvalues of the same
parity in both subspaces, or all the eigenvalues cannot be
made rational at the same time. Above we have shown
that speci�c functions of O1 and O2 can realize a SWAP
gate for two sites, but fail for longer chains.
Since the way to realize general state transfer remains

unknown, the easy solution is to limit oneself to a sub-
space, in which we can encode a qutrit states. Namely,
we assume that the whole chain is initialized in state
|00 . . . 0〉 and the interaction is able to transfer either
type of excitations (up and down). Such a scheme was

discussed for two ionic qutrits in Ref. [20], and a sim-
ilar solution was loosely discussed in Ref. [21]. Notice
that this partial success comes at cost: not only we need
to initialize the whole system, but also it is suitable for
a half-duplex communication only; if one of the users
decides to send a message, the other cannot upload his
message, but must wait for the delivery.

TABLE

Eigenvalues of chosen interaction types in odd and even
subspaces.

Name Form Spectrum (even) Spectrum (odd)

O1 S1,xS2,x+S1,yS2,y {
√
2, 1, 1, 0, 0,−

√
2} {0,−1,−1}

O2 S1,zS2,z {1, 0, 0, 0, 0,−1} {0, 0,−1}
O3 S2

1,xS
2
2,x + S2

1,yS
2
2,y {2, 1, 1, 1, 1, 0} {1, 0, 0}

O4 S2
1,zS

2
2,z {1, 1, 1, 0, 0, 0} {1, 0, 0}

O5 S2
1,xS2,x + S2

1,yS2,y {
√
6,
√
2, 0, 0,

+S1,xS2
2,x+S2

1,yS2,y −
√
2,−
√
6} {0, 0, 0}

xx interaction turns out not to be suitable for
this purpose. Although it can be used for mirroring
states with excitations, |00 . . . 0〉 is not a stationary
state of this evolution. This forces us to use the
SWAP gate acting on a subspace σ containing |00 . . . 0〉
and all states with one excitation of either type,
{|10 . . . 0〉, |01 . . . 0〉, . . . , |00 . . . 1〉, |1̄0 . . . 0〉, |01̄ . . . 0〉, . . . ,
|00 . . . 1̄〉}. We introduce S·,u = S·,zS·,x + S·,xS·,z and
S·,v = S·,zS·,y + S·,yS·,z. Then

A·,1 = |1〉〈0| = 1

2
√

2
(S·,u + iS·,v + S·,x + iS·,y),

A·,2 = |1̄〉〈0| = 1

2
√

2
(−S·,u − iS·,v + S·,x + iS·,y). (4)

The SWAP gate is obtained by combining interaction

Hi,j(a, b) = a(Ai,1A
†
j,1 +A†i,1Aj,1)+b(Ai,2A

†
j,2 +A†i,2Aj,2)

with S2
·,z. N -site Hamiltonian

H =

N−1∑
i=1

Hi,i+1(ai, bi) +

N∑
i=1

(
BiSi,z + CiS

2
i,z

)
(5)

projected on σ has only diagonal and next-to-diagonal
entries not vanishing

ΠΣHΠ†Σ = (6)

C1 +B1 a1 0 . . . 0

a1 C2 +B2 a2 . . . 0

0 a2 C2 +B3. . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 0 0 0 0 . . .

0 C1 −B1 b1 0 . . .

0 b1 C2 −B2 b2 . . .

0 0 b2 C2 −B3. . .

. . . . . . . . . . . .


with states ordered as follows: |10..0〉, |01 . . . 0〉, . . .,
|00 . . . 0〉, |1̄0 . . . 0〉, |01̄ . . . 0〉, . . . , |00 . . . 1̄〉. Now, by
choosing proper coupling constants, we can satisfy con-
ditions for perfect mirroring described in Refs. [10, 11]
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and, in particular, adopt values from Ref. [9]. The diago-
nal terms are to �x the di�erence between the eigenvalue
of |00 . . . 0〉 and of all other states. Since the former is 0,
we expect to have only odd eigenvalues for odd states

and even for even ones. For choice ai = bi =

√
i(N−i)

2 ,

we shall choose Bi = 0 and Ci = N
2 .

Finally, we pass to the problem of chain tomogra-
phy despite limited access. We brie�y recall that in
Refs. [17, 18, 22] the structure of a chain was concluded
from probabilities of the revival of the initial state, or of
its transition to another state, measured at short times.
Since transfer requires chain initialization, it is natural
to adopt the technique from Ref. [22]. Namely, we �rst
initialize the unknown chain in state |10 . . . 0〉, then at
various time we measure the �rst spin in the computa-
tional basis, {|1〉, |0〉, |1̄〉}. From recurrence probability
we can conclude eigenergies of the Hamiltonian eigen-
states with one up excitation and their overlaps with
|10 . . . 0〉. As shown in Ref. [22], by solving the eigenprob-
lem of H we can conclude |ai,i+1| and Bi +Ci. A similar
procedure for |1̄〉 gives |bi,i+1| and Bi −Ci. The signs of
the coupling constants must be known by assumption.

4. Conclusions

We have investigated which concepts known from spin-
1
2 chains are suitable for transferring an unknown quan-
tum state through a spin-1 chain. This problem might
become particularly relevant for manipulating arrays of
three-level atoms. We have argued that the most natural
inter-spin coupling types cannot perform this task per-
fectly by their own. Remarkably, while some interactions
realize the SWAP gate between two spins-1, they fail in
this task for three subsystems, which disquali�es them
as candidates for longer chains. However, it is possible
to transfer any qutrit state through an arbitrarily long
chain, using coupling constants known from the studies
of spin- 1

2 chains, and some arti�cial interaction, which
realizes SWAP gates in two-dimensional subspaces. This
is equivalent of the xx coupling for spins- 1

2 , but in con-
trast it requires state initialization of the whole chain.
A suitable V-type structure of energetic levels can be
found in, e.g., rubidium atoms, which would decay to
a ground state in low temperatures. Since there is no
exchange mechanism between |1〉 and |1̄〉, the chain can
be used only in a simplex mode, without the possibil-
ity of sending two messages in the opposite directions at
the same time. By using a routine for spin- 1

2 chains, we
can also perform tomography of the chain (estimate the
coupling constants, magnetic �eld magnitudes and Cis).
Notice that our results shows that since propagation of
an initial state is still possible, one can use more elabo-
rate techniques to retrieve the initial state at the other
chain with the bucket [15]. While in the spin-1 formalism
the interaction discussed here is very arti�cial, it seems
natural in arrays of three-level atoms with one of the
transitions strongly forbidden. Indeed, V-type spectrum

is very suitable for these purposes, as in low temper-
atures all elements of our chain would thermalize to a
state, which we would call |0〉 as a convention.
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