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The paper presents another phase of the study aimed at determining distributions of random pulses forcing
vibration of an oscillator with damping. At this stage, the impact of the pulses amplitudes on distributions
determined in a finite time interval is discussed. Application of a mathematical model in simulations allows to
determine the differences between the distributions generated in MATLAB environment and those determined by
a function. The experiment was designed so that the qualitative analysis of the issue was possible.
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1. Introduction

The paper reports a subsequent stage of research on the
problem which can be defined generally as an attempt to
determine distributions of random pulses forcing vibra-
tion of an oscillator with damping [1]. The study started
with construction of a mathematical model [2] and fur-
ther, some research methods were developed [3] which
allowed to find the distribution of amplitudes of vibra-
tion forcing pulses in spite of numerical errors [4] or for
the time interval subjected to analysis being too short.
The problem was also considered specifically in context
of the pulse rate [5] and parameters of the vibrating sys-
tem [6]. Both qualitative and quantitative methods were
used while approaching the issue [7].

In this stage of the research project outlined above, the
objective consists in carrying out an analysis of a vibrat-
ing system from the point of view of the number of pulses
making up a distribution forcing the vibration and values
of their stochastic amplitudes. The analysis is expected
to provide answers to the following two questions:

1. What are the differences in the determined distri-
butions if vibration are forced by distributions of pulses
with similar values of amplitudes?

2. How will the systems with different parameters b
and c behave when vibration are forced by distributions
of pulses with amplitude values differing significantly and
what will be the effect of such significant differences on
the computed distributions?

When applied to vibroacoustics, qualitative methods
have certain limitations in interpretation of results [8]
as regards construction of mathematical models [9, 10],
simulations [11, 12], or experiments [13, 14, 15]. However,
on the grounds of both the literature quoted above and
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the study presented in the present paper it is possible to
claim that analyzing a few variables at a time and asking
precise questions [16] represent an effective approach to
specific problems of vibroacoustics [17, 18].

2. The method
Simulations connected with the analysis of systems

with vibration forced by random series of pulses rep-
resented by a function f(t) are a complex issue due to
the intrinsic nature of the problem [19]. A mathemati-
cal model proposed in [20] allows to determine the dis-
tribution of pulses occurring over an infinite period of
time (t → ∞) and forcing motion of a one-dimensional
damped oscillator described by equation

x′′(t) + 2bx′(t) + a2x(t) =
∑
ti<t

ηiδ(t− ti) (1)

with initial conditions x(0) = 0 and x′(0) = 0, where
x is the deflection of the system from its equilibrium
position, the damping coefficient b and the frequency
c = (a2 + b2)1/2 are parameters of the vibrating sys-
tem, i = 1, 2, 3,... is the pulse number, ηi are random
amplitudes of pulses, and ti are random instants of time
at which the pulses occur. It is further assumed that
the time intervals ti − ti−1 between subsequent pulses
have the exponential distribution with the pulse rate λ,
ηi form a sequence of independent identically distributed
random variables with a finite expectation value, and
the set of values {η1, η2, ....ηk} is finite with probabili-
ties pi = p(ηi).

Taking into account the fact that in all papers making
up the research project of which this study is a part,
vibration of the system were simulated by employing
electromechanical analogies, it has been assumed that
the position x of the system is a dimensionless quantity,
which involves corresponding selection of units for oscil-
lator parameters a and b as well as for pulse amplitude
values ηi and the pulse rate λ. And so, the parame-
ters of the oscillator were assumed to be b = 8281 s−1
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and c = 300180 s−1, which corresponded to the anal-
ogous RLC circuit with inductivity L = 5 mH, capac-
ity C = 0.2 nF, and a voltage source [18]. On that side
of the analogy, system position is obviously given in volts.

The values of stochastic moments mn determined
from x(t) [2] are put in the following equations in or-
der to determine the distributions p̄i:

k∑
i=1

p̄i

(
(mi(t)m1(t)−mi+1)ηi (2)

+

n∑
j=1

(
n

j

)
mn−j(t)m1(t)ηj+1

i

C(j + 1)

C(1)cj

)
= 0,

k∑
i=1

p̄i = 1, (3)

where k is the number of the sought values of random am-
plitudes ηk for i = 1, 2, ..., k−1, mi(t) is the i-th stochas-
tic moment of the random variable x, and for j > 1 and
even j

C(j) =
j!

j/2−1∏
r=0

(
(jb/c)

2
+ (2r)

2
) c

jb
, (4)

whereas for odd j > 0,

C(j) =
j!

(j−1)/2−1∏
r=0

(
(jb/c)

2
+ (2r + 1)

2
) . (5)

In simulations carried out in earlier papers [2, 4, 5], dis-
tributions p̄i were determined with the use of Eqs. (2–5)
for the pseudorandom variable ηi assuming three values:
η1 = 845778.47 s−1, η2 = η1/2, and η3 = η1/10.

Using high-performance computers and the PLgrid
platform it was possible to calculate the distributions for
six values of ηi. The conclusions drawn on the basis of
a former study [6] allowed to design the experiment so
that a qualitative analysis of the presented results be-
come possible.

In the simulations, the following algorithm is adopted:
firstly, a pseudorandom function rand () defining a uni-
form distribution in the interval (0, 1) is used to obtain
random time intervals between pulses

randt = − 1

λ
ln(1− rand). (6)

At the subsequent step, random amplitude values ηi
are derived corresponding to the imposed probability pi.

No matter what pulse rate λ is selected for a finite time
interval, determination of the imposed distribution pi
(e.g. pi = 1/3) is impossible. Therefore, occurrences of
each ηi are counted in the simulations. The sum of occur-
rences of a given pulse divided by the sum of occurrences
of all pulses gives the distributions that will be denoted
by p̃i in the following.

In all qualitative investigations described below, the
difficulties encountered in determining a series of pulses
forcing an oscillator are analyzed by computing the
difference between the distributions |p̄i − p̃i|. Earlier

simulations [2, 6] show that the differences between dis-
tributions generated in MATLAB environment p̃i and the
distributions p̄i which were determined on the basis of the
function representing deflection of the system are influ-
enced by: the parameters b and c of the oscillator, pulse
rate λ, length of the analyzed time interval, and the in-
stant of time at which the difference is being determined.
In the applied algorithm, the difference is determined
with the step of 106, at every second. A single series of
vibration is analyzed for t ranging from 0 to 7200 s.

3. An analysis of systems with slightly differing
vibration-forcing pulse amplitudes

At the first stage of the analysis, three distribu-
tions Φi (i = 1, 2, 3) were compared, for which the pulses
amplitudes forcing vibration differed slightly and values
of the remaining parameters b, c, λ influencing the ana-
lyzed function were the same. And so, for the purpose of
simulations, the value η1 = 845778 s−1 was adopted and
three distributions with occurrence of each pulse imposed
with probability pi = 1/6 and pulse amplitudes assuming
six different values:

1. Φ1: η1, η2 = 0.9η1, η3 = 0.6η1, η4 = 0.5η1,
η5 = 0.3η1, η6 = 0.1η1;

2. Φ2: η1, η2 = 5η1/6, η3 = 4η1/6, η4 = 3η1/6,
η5 = 2η1/6, η6 = η1/6;

3. Φ3: η1, η2 = 0.9η1, η3 = 0.5η1, η4 = 0.4η1,
η5 = 0.3η1, η6 = 0.1η1.

As it can be seen, the values of amplitudes are selected
so that the strongest pulse occurring in all distributions
is η1. In the distribution Φ2, amplitudes ηi for i > 1
assume values being multiples of 1/6η1. The other two
distributions are not evenly spaced and assume the values
between η1 and η1/10. In distributions Φ1 and Φ3, five
pulses have the same amplitude values. The difference
between the distributions is determined by the pulse with
the amplitude value 0.6η1 occurring in Φ1 and the pulse
with the amplitude value 0.4η1 occurring in Φ3.

Fig. 1. The applied method of combining of pulses.

In each of the analyzed distributions, pulses with dif-
ferent amplitudes ηi occur at the same random moment
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of time ti, whereas an interdependence is maintained be-
tween the distributions such that if the pulse of the high-
est amplitude η1 occurs in the first distribution, the sec-
ond and the third distribution also receive the hits of the
strongest pulse. The way in which particular groups of
pulses are interrelated is shown in Fig. 1. Thanks to the
applied comparative analysis, it is possible to examine
what is the effect of amplitude values ηi on differences
|p̄i − p̃i| (Fig. 2).

Fig. 2. Differences |p̄i − p̃i| determined for distribu-
tions Φ1, Φ2, and Φ3, λ = 500 s−1, b = 8281 s−1,
c = 300180 s−1, and η1 = 845778 s−1.

The qualitative method applied in the research allows
to conclude that even small differences between ampli-
tudes of vibration-forcing pulses result in occurrence of
differences between distributions determined from the
function representing observed vibration of the system.

The diagrams shown in Fig. 2 confirm the observa-
tion from the previous research [19] that the distribu-
tion of the strongest pulse η1 is determined with the
smallest error. It cannot be confirmed, however, that
the distribution of the weakest pulse η6 is determined
with the largest error, no matter whether the values of
the sought amplitudes are evenly (Φ2) or unevenly (Φ1

and Φ3) distributed.
An analysis of a single function representing vibration

of the system shows that for six pulses with given ampli-
tudes within a finite time interval from 0 to 7200 s, the
distributions were determined with an error too large to
claim that the use of the method in technological appli-
cations would be justified [1].

4. An analysis of systems forced with pulses
with significantly differing amplitudes

To confirm that minor differences in pulse amplitudes
influence the errors in the determined distributions, it
was sufficient to present just one such case subjected
to qualitative studies, and this was done in the previ-
ous section. However, if the analysis concerns differ-
ences |p̄i − p̃i| that occur as a result of significant differ-
ences between pulse amplitudes, the experience acquired
in the previous studies [6] shows that this case should
be considered in the context of oscillators characterized

with different parameters or, in other words, for different
oscillators.

Fig. 3. Vibration forced by a pulse with amplitude
η1 = 845778 s−1 in three oscillators with parameters b
and c given in the diagrams.

Simulations were conducted for three damped oscilla-
tors (Fig. 3) labeled with letters A, B, and C. The pa-
rameters of oscillators B and C were selected bearing in
mind specific needs of the simulation.

In this part of the considerations, simulations will be
conducted for another three distributions denoted by Φ4,
Φ5, and Φ6:

1. Φ4: p(η1) = 1/3, p(η2) = 1/3, p(η3) = 1/3,
p(η4) = 0, p(η5) = 0, and p(η6) = 0;

2. Φ5: p(η1) = 0, p(η2) = 0, p(η3) = 1/3, p(η4) = 1/3,
p(η5) = 1/3, and p(η6) = 0;

3. Φ6: p(η1) = 0, p(η2) = 0, p(η3) = 0, p(η4) = 1/3,
p(η5) = 1/3, and p(η6) = 1/3.

for which the variable ηi assumes six values:
η1, η2 = 5η1/6, η3 = 4η1/6, η4 = 3η1/6, η5 = 2η1/6,

η6 = η1/6.

The distributions were selected so that in Φ4, vibra-
tion are forced by the three strongest pulses, i.e. η1,
η2, and η3; in Φ5, vibration are forced by pulses η3, η4,
and η5; and in distribution Φ6, vibration are forced by
the three weakest pulses, i.e. η4, η5, and η6.

In order to assess the effect which numerical errors issu-
ing from the form of the Eqs. (2–6) have on the difference
|p̄i − p̃i|, the distributions are determined for either six
or three values of ηi. The obtained results are presented
in Figs. 4–9.

Comparing the results presented in Figs. 4, 6 and 8
it can be seen that the strongest pulses are responsible
for occurrence of largest values of the difference |p̄i − p̃i|.
If only distribution Φ4 is taken into account, analysis of
a single waveform shows that within a finite time interval
from 0 to 7200 s and for six values of amplitudes ηi, the
distributions were determined with an error too large for
the method to be acceptable in technological solutions.
However, when the vibration are analyzed for three val-
ues of amplitudes ηi only (Fig. 5), the effect of numerical
errors on the difference between distributions is much less
remarkable.
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Fig. 4. Differences |p̄i − p̃i| determined for the distri-
bution Φ4, λ = 1000 s−1, and six pulse amplitude values.

Fig. 5. Differences |p̄i − p̃i| determined for the distri-
bution Φ4, λ = 1000 s−1, and three pulse amplitude
values.

Fig. 6. Differences |p̄i − p̃i| determined for the distri-
bution Φ5, λ = 1000 s−1, and six pulse amplitude values.

Fig. 7. Differences |p̄i − p̃i| determined for the distri-
bution Φ5, λ = 1000 s−1, and three pulse amplitude
values.

Fig. 8. Differences |p̄i − p̃i| determined for the distri-
bution Φ6, λ = 1000 s−1, and six pulse amplitude values.

Fig. 9. Differences |p̄i − p̃i| determined for the distri-
bution Φ5, λ = 1000 s−1, and three pulse amplitude
values.

Additionally, analyzing the diagrams in which the dis-
tributions are determined for six values of ηi (Figs. 4, 6
and 8) it is noticeable that no matter whether a pulse
with the value ηi forces vibration or not, the error with
which the distributions are determined is of the same or-
der of magnitude.

When a distribution including pulses with smaller am-
plitudes (Φ5, Φ6) forces vibration of systems with strong
damping and short pulse response (Figs. 6–9), it seems
to be possible to apply the described method of analy-
sis in technological solutions. This conclusion refers to
distributions computed for both six and three amplitude
values.

5. Conclusions

The methodology adopted in this paper allowed to
demonstrate how strong is the impact of pulse ampli-
tudes on the difference between the actual distribution
of pulses that force vibration of a damped oscillator and
the distributions determined from a single function repre-
senting motion of such system. Answering the questions
posed in the Introduction it can be state that even small
differences between amplitudes of pulses forcing vibration
of the system cause the occurrence of differences between
distributions determined from the function representing
system vibration. The attempt to answer the second of
the questions, referring to vibration forced by a distribu-
tion of pulses with significant differences between their
amplitudes, allows to draw further conclusions. It is evi-
dent that the more precisely the set of the finite number
of values {η1, η2, ..., ηk} is defined, the smaller will be er-
rors in the determined distribution. Further, it was con-
firmed that for systems with strong damping and short
pulse response, the presented method of analysis of vi-
bration can be applied with success to technological so-
lutions. A kind of added value issuing from the analy-
sis is the information that systems should be designed
bearing in mind that amplitudes of the strongest hits
cause the smallest differences between the distributions
of pulses actually forcing the vibration and distributions
determined from the waveform representing observed mo-
tion of the system.
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