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In the paper, application of the Trefftz complete functions and Kupradze functions in two variational formula-
tions is compared. They are applied in the original formulation and in the inverse one to the solution of boundary
value problems of two-dimensional Laplace’s equation. In these formulations, both solution and weighting functions
are assumed to be of the same type, either the Trefftz function or the Kupradze function. Thus Galerkin versions
of the methods are considered. All methods lead to the BEM and they are nonsingular. The relationship between
the groups of methods of the original and inverse formulations is noticed. Numerical experiments are conducted
for the Motz’s problem. The accuracy and simplicity of the methods are discussed. All methods give comparable
results. Since they are nonsingular, they may be successfully applied to solving boundary problems.
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1. Introduction

In 1926, Trefftz [1] proposed a method of solving
boundary problems for which the solution of homoge-
neous PDE exists in a close form. In point of fact, this is
a boundary method which practically leads to the pecu-
liar, non-singular boundary element method (BEM). Its
application is the same as this of standard BEM, e.g. [2–
4]. The Trefftz method (briefly, TM) employs superpo-
sition of functions (bases) satisfying homogeneous gov-
erning equation in a domain but not necessarily bound-
ary conditions. The unknown coefficients are obtained
from the criterion of meeting boundary conditions in any
sense. In standard TM, the bases are Trefftz complete
functions (T-functions) [5, 6]. The general theory of TMs
(groups of TM) can be found in [7]. The T-functions
are named in different ways, e.g. the harmonic polyno-
mials [8–10]. They are used in methods which are also
named in different ways, for example the method of par-
ticular solutions [8].

Kupradze functions (briefly, K-functions) play quite
the same role. They are in fact the fundamental solu-
tions (FS) of the governing problem with the singular-
ity removed by the application of the idea proposed by
Kupradze, i.e. the source points are moved outside the
domain Ω and the boundary Γ. So the K-functions sat-
isfy homogeneous governing equation inside the domain
of interest but not boundary conditions. It leads to the
method which is named variously [8, 11]. Some of the
names that are quoted in [6] are: the modified Treffz
method, the method of fundamental solutions, the source
function method, or the discrete singularities method.
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Both of the above-mentioned methods belong to TMs.
The comparison of these methods was first given in [12]
and then in [8–10], and [13], but not in Galerkin ver-
sions. Therefore the aim of this paper is to compare
these methods in this way. Other Trefftz-type methods
are compared in [11, 14, 15] where one of the two methods
is applied in the Galerkin version.

In this work, four methods are derived. In order to
distinguish the detailed differences among them, an aux-
iliary nomenclature is introduced in one of the follow-
ing sections. The methods are derived from the original
and the inverse variational formulations. The solutions
are in the form of series in which the bases are either
T-functions or K-functions. Since the Galerkin versions
are considered, then the weights have the same forms
as the bases, i.e. either T-functions or K-functions. All
methods lead to the first kind of Fredholm BIE. The BIE
is an inherent part of BEM; an excellent survey of BEM
is given in [16].

First, the methods are formulated. Since the Laplace’s
equation is the simplest elliptic second order one, thus it
is utilized for studying robustness and efficiency of the
derived TMs. Numerical experiments are provided for
the Motz’s problem because this problem has the ana-
lytical solution. The results are depicted in figures and
furthermore the errors of methods, via Euclidean norm,
are given quantitatively. At the end, some conclusions
are derived.

2. Classical and variational formulations
of boundary problems

Let in the domain Ω surrounded by the boundary Γ be
given the Laplace boundary value problem described by
a differential equation (Fig. 1)

∆u(x) = 0, x = ẋ ∈ Ω, (1)
and Dirichlet and Neumann boundary conditions
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u(x) = û(x), x ∈ Γu; (2)

Dnu(x) = v(x) = v̂(x), x ∈ Γv, (3)
where ẋ ∈ Ω and x ∈ Γ = Γu ∪ Γv are the current
points belonging to the domain Ω and the boundary Γ,
respectively, and û(x), v̂(x) are given functions.

Fig. 1. Geometry of the general boundary problem.

The boundary problem described by Eqs. (1)–(3) is
classically formulated.

The transformation of the classical formulation into
variational formulations is done via the weighted resid-
ual method (WRM) [17]. Let the solution u(x) be substi-
tuted by an approximate solution ũ(x). Inserting ũ(x)
into Eqs. (1)–(3) generates residuals. The first step of
WRM is multiplying Eq. (1) by any weighting functionW
(briefly, by a weight) and integrating it over domain Ω̄,
Ω̄ = Ω ∪ Γ. Hence, the weighted integral equation is
obtained. An idea of WRM consists in selection of ap-
propriate weights in order to distribute the residuum on
domain Ω̄ so the weighted integral equation should be
equal to zero:∫

Ω

∆ũWdx = 0, x ∈ Ω̄. (4)

Eq. (4) is the basic one of WRM and is called the
weighted residual statement. At the same time, it is an
original variational formulation of the boundary prob-
lem. Now, let one introduce boundary conditions into
Eq. (4) via Green’s second identity. After some cal-
culations, one obtains original and inverse variational
formulation, respectively, of the boundary problem de-
scribed by Eqs. (1)–(3) with instilled boundary condi-
tions, namely [18, 19]:∫

Ω

∆ũWdx +

∫
u

ũDnWdx−
∫

v

ṽWdx =∫
u

ûDnWdx−
∫

v

v̂Wdx, (5)∫
Ω

ũ∆Wdx +

∫
u

ṽWdx−
∫

v

ũDnWdx =∫
u

ûDnWdx−
∫

v

v̂Wdx. (6)

Note that the right-hand sides in Eqs. (5) and (6) are
the same.

3. Forms of the approximate solution, bases,
and weights

The approximate solution ũ is assumed in the form of
series ũΣ,

ũ = ũΣ =
∑

v
avφv, v = 1, 2, ...n, (7)

where av are unknown coefficients and φv are bases.
The bases φv are made up with T-functions marked

with u◦(r), r = |x′ − ẋ| or K-functions u•(rε), rε =
|x′
ε − ẋ|, Fig. 2, where the set {x′

ε} describes distribu-
tion of sources on the fictitious boundary Γε and the set
{x′} describes distribution of influence points on the real
boundary Γ; the influence points are equivalent to the
source points if the bases constitute FS.

Fig. 2. Geometry of the boundary problem.

T-functions satisfy the homogeneous differential equa-
tion, i.e. ∆u◦(r) = 0, and they are not singular. There-
fore T-functions are defined separately both for exterior
domain and for interior one. The set of u◦(r), denoted
by {u◦v(r)}, is described a priori. For interior domain Ω
and two-dimensional problem, the T-functions have the
form, [6, 7, 18], {1, rv exp(ivϕ)}, v = 1, 2... or in explicit
form {1, r cos(ϕ), r sin(ϕ), r2 cos(2ϕ), r2 sin(2ϕ), ...}.

The form of u•(rε) is quite the same as FS for
the non-homogeneous Laplace’s equation and it solves
∆u•(r) = −δ(r), where δ(r) is the Dirac delta func-
tion, r = |x′ − ẋ|. Following Kupradze’s tracks, all
sources {x′

ε} are distributed outside Ω̄, {x′
ε} /∈ Ω̄ i.e.

they are obtained moving x′ outside Ω̄. So, u•(rε)
is the solution to the homogeneous Laplace’s equation,
i.e. ∆u•(rε) = 0. For two-dimensional problem, one
has u•(rε) = 1/(2π) ln(1/rε). The set of {u•v(rε)} is
derived from the formula u•v+1(rε) = Dnu

•
v(rε), where

u•1(rε) = u•(rε), n is the unit outward normal to Γ
at x′. As a result, the u•(rε) is not singular, if ẋ → x,
{x, ẋ} ∈ Ω or x′ → x, {x,x′} ∈ Γ.

It is worth to note that when the distance from
the source increases, the K-functions are converge to
T-functions. However, the methods with K-functions are
much less stable than the methods with T-functions [8].
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4. Numerical methods

Four methods are derived. In order to clearly distin-
guish differences between them, the symbols are used as
proposed in [18], instead of descriptions. Each method
can be described by a four-letter code. The first let-
ter denotes the kind of the variational formulation from
which the method is derived: O — [O]riginal and I —
[I]nverse. The second component of the code, after the
hyphen, are two letters separated by semicolon. The first
means that the solution is assumed to be a S — [S]eries
expansion. The latter describes the bases; here the bases
constitute T-functions and K-functions. The third com-
ponent, again after the hyphen, is a fourth letter. It cor-
responds to the form of the weights; here they are made
also by T-functions and K-functions.

Hereafter, the following nonsingular two groups
of methods are considered: O–S;T–T, O–S;K–K and
I–S;T–T, I–S;K–K. The first group of methods is based
on Eq. (5) while the second one on Eq. (6). All meth-
ods are the Galerkin versions, so it is justified to explore
them together, and to provide their comparisons.

Fig. 3. Geometrical symbols of the bases.

Fig. 4. Geometrical symbols of the weights.

In all TMs, the sources or influence points are denoted
identically by open circles “◦”, the weights points are
marked by asterisks “*”, but the calculated points are
marked by solid circles “•”, Figs. 3 and 4.

4.1. The first method of O-formulation; O–S;T–T
In this case, the solution has the form

ũ(r) =
∑

v
avu
◦
v. (8)

Unknown coefficients av, interpreted as intensity of the
influence points, need to be calculated. First of all, the u◦v
can take one of the two forms, Fig. 3:

• u◦v = u◦(rv), rv = |xv − ẋ|, {xv} — the set of the
influence points,

• u◦v = u◦v(rq), rq = |xq − ẋ|, xq — one influence
point.

Both {xv} and xq may be distributed arbitrarily and not
necessarily on Γ. Below, the second version is considered
and the xq point is placed in the domain Ω.

The set of weights is given by W = {u◦µ}. Note that
u◦µ may be also interpreted in two ways, Fig. 4:

• u◦µ = u◦(rµ), rµ = |xµ − ẋ| and the set of {xµ}
may be distributed arbitrarily,

• u◦µ = u◦µ(ra), ra = |xa − ẋ| and one point xa is an
arbitrary one and it may be placed anywhere.

Note that when this case of weight is considered, the
points {xµ} or xa may not be on Γ. Here the second
variant is selected and xa is chosen in domain Ω.

Because of ∆u◦v = 0 and moving ẋ ∈ Ω to x ∈ Γ,
Eq. (5) reduces to∑

v
av

(∫
u

u◦v(r′q)Dnu
◦
µ(r′a)dx

−
∫

v

Dnu
◦
v(r′q)u

◦
µ(r′a)dx

)
=

∫
u

û(x)Dnu
◦
µ(r′a)dx

−
∫

v

v̂(x)u◦µ(r′a)dx, (9)

where r′q = |xq − x|, r′a = |xa − x|, {xa,xq} ∈ Ω,
{x} ∈ Γ.

After some calculations, see e.g. [15, 20], this leads to
the set of algebraic equations which can be written down
in the matrix form

Aa = b, (10)
where A is the main matrix of the appropriate inte-

grals, a is the vector of unknowns {av}, and b is the
vector of the known coefficients computed as the inte-
grals from the known boundary conditions û(x) and v̂(x).
The BIE in the rest of the methods can be written down
in the form of Eq. (10).

It is worth to note that the main matrix A in Galerkin
versions is symmetric [11]. So its accuracy and compu-
tational efficiency are higher than those in the other for-
mulations [21–23].

4.2. The second method of O-formulation; O–S;K–K
The method has the solution in the form
ũ(r) =

∑
v
avu
•
εv. (11)

Unknown coefficients av, also interpreted as intensities
of the sources, should be calculated. Two sets of bases
can be generated, Fig. 3:
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• u•εv = u•(rεv), rεv = |x′
εv − ẋ| and the set of

{x′
εv} ∈ Γε,

• u•εv = u•v(rεq), rεq = |xεq − ẋ| and one point xεq
ought to be placed anywhere but outside Ω̄.

Here, the first variant is chosen. It means that instead
of sources of high orders, a finite number of sources of
the first order is applied. Thus the set {u•(rεv)} is used
instead of {u•v(rεq)}; and consequently, ṽ(x) = Dnu

• =∑
v Dnu

•(rεv).
The set of weights is also given by K-functions, i.e.

W = {u•εµ}. Quite similar as above u•εµ, may be also
interpreted in two ways, Fig. 4:

• u•εµ = u•(rεµ), rεµ = |x′
εµ − ẋ|,

• u•εµ = u•µ(rεa), rεa = |xεa − ẋ|.

In this case the first variant is also chosen. Note that
when this type of weights is chosen, the points {x′

εµ} or
xεa may be placed anywhere and not necessarily on Γε,
but here it is assumed that {x′

εµ} are distributed on Γε.
Since ∆u•(rεv) = 0, the integral over the domain Ω in

Eq. (5) is equal to zero. Shifting ẋ ∈ Ω to x ∈ Γ, Eq. (5)
can be rewritten as BIE,∑

v
av

(∫
u

u•(r′εv)Dnu
•(r′εµ)dx

−
∫

v

Dnu
•(r′εv)u•(r′εµ)dx

)
=∫

u

û(x)Dnu
•(r′εµ)dx−

∫
v

v̂(x)u•(r′εµ)dx, (12)

where for the sake of brevity hereafter, Figs. 3, 4,
r′εv = |x′

εv − x| , r′εµ =
∣∣x′
εµ − x

∣∣ ,
{x′

εv,x
′
εµ} ∈ Γε, {x} ∈ Γ. (13)

The next two methods that belong to I-formulation
are based on Eq. (6). The methods are derived under
the same assumptions as the methods of O-formulations
so these assumptions are not repeated. That is why they
are considered jointly in the next subsection.

4.3. Methods of I–formulation

The next method is I–S;T–T (compare to O–S;T–T).
Therefore Eq. (6) leads to the following BIE:∑

v
av

(∫
u

Dnu
◦
v(r′q)u

◦
µ(r′a)dx

−
∫

v

u◦v(r′q)Dnu
◦
µ(r′a)dx

)
=∫

u

û(x)Dnu
◦
µ(r′a)dx−

∫
v

v̂(x)u◦µ(r′a)dx. (14)

The last method is I–S;K–K; compare to O–S;K–K. So,
the BIE derived from Eq. (6) comes down to∑

v
av

(∫
u

Dnu
•(r′εv)u•(r′εµ)dx

−
∫

v

u•(r′εv)Dnu
•(r′εµ)dx

)
=

∫
u

û(x)Dnu
•(r′εµ)dx−

∫
v

v̂(x)u•(r′εµ)dx. (15)

5. Numerical calculations, results

5.1. Research object

There are no limitations as for the boundary problem,
i.e. its geometry and boundary conditions. But it is
recommended to choose such a problem which has an
analytical solution. The Motz’s problem is a benchmark
of singularity problems and it is selected as a prototype
for verifying the above-described methods. This problem
solves the Laplace’s equation ∆u(r) = 0 on the rectan-
gle x ∈ (−1, 1) and y ∈ (0, 1) with Neumann-Dirichlet
boundary conditions, Fig. 5,

u = û = 0, x ∈ (−1, 0) ∩ y = 0,

u = û = 100, x = 1 ∩ y ∈ (0, 1),

Dnu = v̂ = 0, elsewhere. (16)
The solution of the Motz’s problem is given in [10, 24],

u(r, ϕ) =
∑

v
cvr

v+1/2 cos(v + 1/2)ϕ,

v = 1, 2, ..., n, (17)
where cv are expansion coefficients and (r, ϕ) are polar
coordinates with the origin at (0,0).

The solution Eq. (17) satisfies the Laplace’s equation
and boundary condition for x ∈ (−1, 1) and y = 0 au-
tomatically. The coefficients cv are sought by satisfying
the other boundary conditions.

Fig. 5. The Motz’s problem.

5.2. Results

In this section, the numerical experiments for the
Motz’s problem are discussed. The errors of TMs are
measured via the [R]oot [M]ean [S]quare distance,

ERMS =
(∑

i
(ũi − ui)2

/ni

)1/2

, (18)

where ni is the number of the calculated points xi ∈ Ω.
In order to compare the methods presented in the pre-

ceding section, some numerical results are quoted. In all
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Fig. 6. Exact solution of the Motz’s problem.

Fig. 7. Approximate solution and the errors of O–S;T–
T/I–S; T–T: (a) ũ, ERSM = 0.7287, (b) false colored by
error EL = |u− ũ|.

numerical experiments, the following parameters are as-
sumed: xq = xa = (0, 0.5), hence the point is placed
in the middle of the domain Ω, the source points are
moved away from the real boundary Γ to the artificial
one Γε by ε = εv = 3, Fig. 3, whereas the weight points
by ε = εµ = 3, Fig. 4. Both distances are based on
numerical experiments but they are not confirmed with
theoretical considerations; it seems to be a very difficult
task. The number of source points x′

εv and the number
of weight points are equal, n = m = 40.

The exact solution is depicted in Fig. 6. This is the
reference result. The solutions obtained by each of the

Fig. 8. Approximate solution and the errors of O–S;
K–K/I–S;K–K: (a) ũ, ERMS = 0.7922, (b) false colored
by error EL = |u− ũ|.

methods are presented in Figs. 7 and 8. Since the results
are the same within each pair, they both are presented
in common figures.

6. Concluding remarks

As can be seen, the TM method may be considered, for
instance as a generalization of the method of separation
of variables. In classical one (Fourier method), the basic
set of eigenfunctions has to be particular to a differential
equation, to a specific geometry, and boundary condi-
tions. The TM weakens these requirements, namely, it
requires that the set of bases satisfies the homogeneous
governing equation. However, when calculating a set of
unknown coefficients, the boundary conditions are sat-
isfied in some manner on the given geometry. This is
a first advantage from the point of view of engineering
applications.

As it has been mentioned in the introduction, TMs
belong to the boundary-type methods. The advantages
include a simple treatment of physical and geometrical
singularities. Additionally, the data preparation requires
only a geometrical definition of the boundaries and not of
the mesh within. This is the second benefit for engineers.

In the paper, two groups of the Galerkin version meth-
ods containing nonsingular T-functions and K-functions
are presented: the former based on the original varia-
tional formulation of the problem, the latter — on the
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inverse one. In the Galerkin version, the base, as well
as the weight, take the same form, of either T-functions
or K-functions. Since T-functions and K-functions are
nonsingular, therefore the methods are also nonsingular.
All the methods are applied for solving numerically 2-D
Motz’s problem. Based on this example, the efficiency
and accuracy of separate methods, expressed by means
of the root mean square distance between the analytical
and approximate solutions, are calculated. The follow-
ing conclusions can be drawn from the above-presented
considerations:

1. It is proved that, under certain conditions, the
group of methods in Galerkin versions of O-formulation
is related to the group of methods of I-formulation,
i.e. O–S;T–T/I–S;T–T and O–S;K–K/I–S;K–K. Further-
more, the main matrices have the property of symmetry.

2. Taking into account the efficiency and accuracy,
the methods O–S;T–T/I–S;T–T give the best results, so
O–S;T–T/I–S;T–T are superior to O–S;K–K/I–S;K–K.

3. Since all methods may serve as efficient numeri-
cal methods for solving engineering problems, in the fu-
ture work the authors intend to employ them for solv-
ing the magnetic and electric field distributions of the
transformer.
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