
Vol. 128 (2015) ACTA PHYSICA POLONICA A No. 1–A

Acoustical Engineering 2015

Sound Synthesis Using Physical Modeling
on Heterogeneous Computing Platforms

M. Plutaa,∗, B. Borkowskia, I. Czajkab and K. Suder-Dębskab

aAGH University of Science and Technology, Department of Mechanics and Vibroacoustics,
Al. Mickiewicza 30, 30-059, Krakow, Poland

bAGH University of Science and Technology, Department of Power Systems and Environmental Protection Facilities,
Al. Mickiewicza 30, 30-059, Krakow, Poland

The paper presents a comparison of central processing unit (CPU) and graphics processing unit (GPU) per-
formance in sound synthesis based on physical modeling. The goal was to achieve real-time performance with
two- and three-dimensional finite difference (FD) instrument models. Two abstract instruments, a membrane and
a block, were modeled and tested using a CPU and a GPU in the OpenCL framework to find a threshold of
real-time model size. Two different algorithms were compared. With a parallelized algorithm, a middle-class GPU
outperformed a top-class CPU by factor of 2.5 in 2D and by factor of 7.5 in 3D model. Synchronization issues in
parallel GPU calculations were discussed and addressed. The results show that GPUs can significantly speed up
real-time musical instrument simulations, allowing for developing more complex and realistic models.

DOI: 10.12693/APhysPolA.128.A-22
PACS: 43.40.Dx, 43.58.Ta, 43.75.Zz

1. Introduction

An increase in available computing power that could
have been observed for a past few decades leads not only
to incremental improvements, but at some points it opens
entirely new research areas to explore. One of such ar-
eas is sound synthesizing in real time based on physical
modeling of the instrument.

While most sound synthesis methods attempt to recre-
ate only the sound of the instrument, e.g. by analysis and
resynthesis of its dynamic spectrum, physical modeling-
based synthesis simulates the instrument itself by creat-
ing and using its numerical model. If the model is recre-
ated in sufficient detail, it can be used to produce the
sound in the way the real instrument does. It includes
the variability of registers, i.e. differences in timbre re-
lated to pitch regions, as well as different articulation
techniques related to various methods and parameters
of excitation. Good models can be used to study sound
production phenomena in instruments or predict changes
in sound caused by alterations to the instrument prop-
erties, such as shape, size, or material. On the musical
performance side, such models can be played, but unlike
natural instruments, model parameters can be altered as
desired. It is also possible to play it automatically using
a sequencer, e.g. to ensure repeatability of selected pa-
rameters, which is not possible with natural instruments
without resorting to robots.

There is still an issue of control, as it is difficult
to set and continuously tune performance parameters
with usual computer controls or algorithms. That is why

∗corresponding author; e-mail: pluta@agh.edu.pl

physical modeling synthesis is especially predisposed to
use it with physical controllers resembling original musi-
cal instruments [1]. Here, a problem emerges: complex
models that can utilize control possibilities provided by
physical controllers are computationally expensive. How-
ever, physical controllers work in real time, and so must
work the model, in order to provide auditory feedback.

Although there are similarities between study-oriented
simulations and sound synthesis, there are also important
differences. Simulations are aimed at studying acousti-
cal phenomena in the instrument, with the possibility to
produce sound, usually without strict time limits for the
computations. The parameters are set before the simu-
lation starts. Sound synthesis often works as an instru-
ment, with the real-time auditory feedback and control
over the performance parameters. This includes control
over the excitation and selected parameters of the in-
strument related mostly to its geometry, e.g. shortening
strings, lengthening pipes, etc.

In case of models working in real time there is a trade-
off between model complexity and available computing
power. This paper focuses on increasing the comput-
ing power to allow more complex models, by utilizing
all processing units present in contemporary computers
to perform the simulation: not only central processing
units (CPUs), but also graphics processing units (GPUs).
This kind of approach is referred to as heterogeneous
computing [2].

Similar research has been conducted with encouraging
results [3–5]. However, solutions chosen in those studies
limit possible devices only to GPUs, and only from one
vendor. The study presented here imposes no such limi-
tations. Results will apply to much broader set of devices.
The research is aimed, in future, to combine computing
power of various types of devices working simultaneously.

(A-22)

http://dx.doi.org/10.12693/APhysPolA.128.A-22
mailto:pluta@agh.edu.pl


Sound Synthesis Using Physical Modeling on Heterogeneous Computing Platforms A-23

Initial findings were reported in [6]. This paper
presents results of further study. Two different imple-
mentations of finite difference (FD) membrane simula-
tion in 2D and one implementation of a FD block sim-
ulation in 3D were compared on a CPU and a GPU to
find a threshold for the real-time model size. Section 2 of
this paper presents FD models of the membrane and the
block used in simulations. Section 3 discusses GPU com-
puting frameworks. Section 4 describes implementations
of FD models with regards to heterogeneous computing
problems. Test results are discussed in Sect. 5. Finally,
Sect. 6 presents conclusions of the study.

2. Models of instruments

Not all simulation methods used in instrument stud-
ies are appropriate for sound synthesis based on physi-
cal modeling. The limiting factor is the requirement of
the real-time control over the simulation and real-time
auditory feedback. The model has to be controlled in
short time intervals of the order of 10 ms. Two meth-
ods are commonly used to achieve it: the finite dif-
ference (FD) method and the waveguide (WG) synthe-
sis method. While WG method is generally more effi-
cient [7], FD method is more versatile [8, 9], and allows
for more diverse models. For this reason, FD has been
chosen for the study.

The presented work is aimed at testing performance of
two implementations of 2D model and comparing CPU
and GPU performance in 2D and 3D models. The op-
eration of the model itself is of secondary importance.
The model should be straightforward and its proper
working parameters should be known. It should also scale
up and down easily, to be a good base for performance
testing. A square membrane (in 2D) and a cubical block
(in 3D) have been chosen to be modeled. Despite simplic-
ity, they behave like percussion instruments and produce
instrument-like sounds.

The FD method was used to obtain an approximate
solution of the wave equation with dissipation [10] in two
dimensions:

∂2u

∂x2
+
∂2u

∂y2
− 1

c2
∂2u

∂t2
= η

∂u

∂t
, (1)

and in three dimensions:
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
− 1

c2
∂2u

∂t2
= η

∂u

∂t
, (2)

where u(x, y, t) or u(x, y, z, t) is the displacement, c is the
velocity of acoustic waves, and η is the viscosity coeffi-
cient.

For the purpose of sound synthesis, the second-order
Taylor expansion gives reasonable approximation [8] in
two dimensions:

un+1
i,j =

1

(1 +A)

(
ρusur 2D + 2 (1 − 2ρ)uni,j

− (1 −A)un−1
i,j

)
, (3)

and in three dimensions:

un+1
i,j,k =

1

(1 +A)

(
ρusur 3D + 2 (1 − 3ρ)uni,j,k

− (1 −A)un−1
i,j,k

)
, (4)

where i, j and k are spatial indexes, n is the time index,
ρ = c2∆t2/∆x2, A = 1

2c
2η∆t, usur 2D = uni+1,j + uni−1,j

+ uni,j+1 + uni,j−1, and usur 3D = uni+1,j,k + uni−1,j,k
+ uni,j+1,k + uni,j−1,k + uni,j,k+1 + uni,j,k−1. It has been
assumed that ∆x = ∆y = ∆z. In order to maintain
simulation stability, both spatial and temporal steps had
to be related to each other by means of the following
condition [8]:

ρ ≤ 1. (5)
Subsequent displacement values un+1

i,j or un+1
i,j,k were cal-

culated using the leap-frog algorithm. The membrane
in 2D was clamped along the boundary [11]. This im-
plied the boundary condition: on the whole boundary,
the scalar gain of 0 had to be maintained. The initial con-
dition was simulated by the Gaussian impulse [9]. Similar
conditions were applied to the block in 3D.

3. Choice of the computing framework

Current generation of graphics processing units
(GPUs) can perform general purpose computations.
However, because of main purposes they serve, GPUs
differ from CPUs in a number of ways [12]. The core
of a CPU is versatile and fast in single-threaded appli-
cations. It has an out-of-order super-scalar architecture,
a branch predictor, and can process more than one op-
eration per cycle. Desktop and laptop CPUs contain a
small number of such cores — usually 2 or 4. GPU pro-
cessing elements are designed towards high throughput.
They execute a number of scalar instructions in paral-
lel. Lower complexity and slower clock allow to pack
many of them in one GPU. CPUs use large multi-level
cache memory. Older GPUs used much smaller cache,
due to different usage scenario, where memory latency
was less important. In recent GPUs, cache has been in-
creased. Memory bandwidth is another important dif-
ference. A system memory used by CPUs in current
desktops or laptops has a peak bandwidth of 25.6 GB/s.
A GPU memory bandwidth reaches 30–80 GB/s in mid-
dle class laptop GPUs, and up to 300 GB/s in high-end
desktop GPUs, due to higher clock speed and wider bus.
However, in most cases, data to be processed usually al-
ready resides in system memory, and CPU can use it
immediately, while for GPU it has to be copied from
main memory to GPU memory before, and in the oppo-
site direction after computations. Those differences show
clearly that GPUs could be more efficient than CPUs in
parallel computing. They are already utilized in physical
modeling where a large number of nodes can be calcu-
lated simultaneously.

There are two main standards for general-purpose
computing on GPUs (GPGPU): CUDA [13] and
OpenCL [14]. Some sources claim that CUDA is more
efficient [15, 16]. The others [17] point out OpenCL pos-
sibility to use various devices from all major GPU and
CPU vendors (e.g. AMD [18], Intel [19], Nvidia [20]), con-
trary to CUDA being centered around Nvidia. So far,



A-24 M. Pluta, B. Borkowski, I. Czajka, K. Suder-Dębska

there have been some successful experiments with im-
plementing sound synthesis based on physical modeling
using CUDA [3–5]. In the present study, the OpenCL
variant is explored. The main reason for this choice is
the fact that OpenCL allows calculations to be executed
simultaneously on various devices and types of devices.
More complex models could be divided into subsystems
operating on separate devices: several (three or four)
GPUs and one or more multi-core CPUs. All those de-
vices can fit into one personal computer, creating a very
complex and powerful, but still compact physical model-
ing synthesizer.

OpenCL provides an API and a runtime for cross-
platform parallel computing [21]. While CUDA archi-
tecture reflects physical architecture of Nvidia GPUs,
OpenCL operates with an abstract hierarchy of elements
due to compatibility with various types of devices. A host
(usually a CPU) coordinates execution and data transfer
to and from an array of compute devices (CPUs, GPUs,
or different kinds of processors). Compute devices con-
sist of arrays of compute units. One compute unit is
composed of an array of processing elements. Computing
tasks can be comprised of data-parallel kernels, applying
a single function over a range of data elements in parallel.
For every element in 1-, 2-, or 3-dimensional kernel index
space, a work-item will be executed. All work-items exe-
cute the same program, however its execution can differ
due to branching based on data or the index assigned
to the work-item. Work-items are grouped into work-
groups. Communication between work-items is possible
only within a work-group.

A host can be programmed in C (C89 compatible)
or C++. Kernels are programmed in a C-like language
(based on C99). Kernel sources are loaded during the
run-time of the host program, compiled just-in-time, and
sent to the compute device [22].

4. Implementations of models

The first part of the study has been conducted us-
ing 2D model only, with two different implementations.
On the basis of the better performing variant, a 3D im-
plementation was created. 2D and 3D implementations
worked with 2- and 3-dimensional OpenCL workspaces,
accordingly. For efficient data transfers, all the grid
data (displacement values for three consecutive time
steps as well as boundary conditions) was stored in 1-
dimensional memory array, with indexing appropriate
for 2D or 3D problem. In two dimensions grids from
8 × 8 up to 256 × 256, with the increment of 8 in each
dimension, were used. In three dimensions, grids ranged
from 8 × 8 × 8 to 32 × 32 × 32, with the increment of 4.
The result of the calculation was always a sound sample
with 44100 Hz sampling frequency.

The first 2D implementation (hereinafter referred to
as V1 or “variant 1”) was the same as the one used in [6].
In this variant, calculation of each waveform sample in-
volves one execution of the kernel on an appropriate num-
ber of work items (threads), as required by the grid size.

There is a high overhead caused by memory transfers be-
tween the host and the compute device and by starting
the kernel in each step of the simulation. While not opti-
mized for high performance, this variant has the feature
of being able to control the grid and update waveform at
each time step.

2D V1 host-side algorithm has been implemented as
follows:

1. Set the grid and the initial condition.

2. For each time step:

(a) copy buffers (current and previous time step)
to the compute device,

(b) execute the kernel,
(c) retrieve buffer (next time step) from the com-

pute device,
(d) get the result (one signal sample) from the se-

lected grid cell,
(e) rotate buffers.

The kernel-side of the 2D V1 algorithm consists of the
following steps:

1. Check kernel space index.

2. Execute only if inside the grid.

3. Cell grid on border?

• Yes: apply gain = 0.
• No: calculate the next time step for a single
grid cell according to Eq. (3).

The second 2D implementation (V2 or “variant 2”) ad-
dresses performance problems of variant 1. It reduces
the number of unnecessary memory transfers and starts
of the kernel by:

• calculating more than one signal sample in one ker-
nel run,

• using a ring buffer by the kernel and thus skipping
buffer rotation.

At this point, some issues related to the architecture of
parallel compute devices (especially GPUs) have to be
considered. V1 kernel was executed on as many work
items as the grid size required. There was no problem
of synchronization between work items, since all of them
were calculating displacements for the same time step.
Even if the grid size exceeded maximum number of simul-
taneous threads, calculations were automatically divided
into a number of smaller work groups of sizes possible to
be handled by the compute device and calculated group
after group. If the kernel has to calculate not one but
a number of consecutive time steps, like in V2, it must
be ensured that neighboring cells in the current and the
previous step have been synchronized. Such a precaution



Sound Synthesis Using Physical Modeling on Heterogeneous Computing Platforms A-25

is required because kernels execute calculations indepen-
dently in each work item, so their execution time can vary
due to different conditions. OpenCL has a mechanism of
barriers that can stop all kernels until all of them reach
certain point, but it works only within a work group.
Even using barriers, larger grids would be divided into
independently calculated sub-grids, according to the de-
vice’s internal work group division, preventing synchro-
nization between some areas of the grid.

The solution is to ensure that only one work group
handles the grid. A mixed, serial-parallel implementa-
tion has been developed. The algorithm checks the max-
imum size of the work group for the device. If the grid
is smaller, each work item handles one cell. Otherwise,
the work item loops through a number of cells. Barriers
are used after each time step, so that entire grid stays
synchronized.

In comparison to V1, V2 host-side algorithm leaves
more operations for the kernel to perform and has been
implemented as follows:

1. Set the grid and the initial condition (next, current,
and previous step in one 1-dimensional array).

2. Compare maximum work group size to the grid size
and set the number of grid cells to be calculated
serially in one work item.

3. Set a signal buffer length (number of time steps to
calculate in one kernel run).

4. Copy grid buffer to the compute device.

5. Execute the kernel.

6. Retrieve buffers (grid and signal) from the compute
device.

Kernel side of the V2 consists of the following steps:

1. Set indexing pointers for ring buffer storing the grid
(for next, current, and previous step).

2. Set current sample number to 0 (beginning of the
wave buffer).

3. Set current cell to 0 (the first of a number of cells
to calculate in this work item).

4. Check position in work group index space and cal-
culate cell position on the grid.

5. Cell grid on border?

• Yes: apply gain = 0.
• No: calculate the next time step for a single
grid cell according to Eq. (3).

6. Read the observation point and store it in the wave
buffer.

7. If there are more cells to calculate, increase the
current cell number and go to 4.

8. Update indexing pointers for the ring buffer.

9. Barrier.

10. If there are more time samples to calculate, increase
the current sample number and go to 3.

Variant 2 is more efficient than the previous one and it
automatically adapts to the capabilities of the compute
device (number of simultaneous threads). Signal buffer
length can be tuned according to the scenario of use.
The longer the buffer, the better the performance, but
also higher audio and control latency, since while run-
ning, kernel is inaccessible from the host.

3D implementation uses the same algorithm as 2D V2,
but with 3-dimensional grids and with next time step
calculated according to Eq. (4). It introduces the pos-
sibility to define boundary not only on the ends of the
grid, but in any cell, creating thus a basis for simulation
of differently shaped instruments. Boundary conditions
are implemented as a mask for a main grid — an addi-
tional 3D grid, the same size as the main one, sent to
the kernel. The kernel checks if the cell is on border by
reading mask value under the same coordinates as the
calculated cell. Cubical block does not require border
mechanism more complex than this used in V2, but for
the sake of further study, border mask was used here
as well.

5. Results

Two devices were compared: a GPU—Nvidia GeForce
GT 750M, and a CPU — Intel Core i7-4700HQ, both
being components of a notebook computer. At the time
of the study, the former was a middle-class mobile GPU,
and the latter — a top-class mobile CPU. Larger number
of devices was tested in a previous study [6].

All the tests were conducted using 64-bit Linux sys-
tem. Calculations were performed using single precision
(32-bit) floating point values, adequate for the sound syn-
thesis purposes. GPU results were bit-to-bit compared to
CPU results to check whether GPU introduces any nu-
merical errors of its own, but both results were identical.

In the first part of the study, 2D algorithms
(V1 and V2) were executed using both devices. In all
tests, a sound sample 1 s long was generated using grids
from 8× 8 up to 256× 256 cells, with the increment of 8
in each dimension. In variant 2 wave buffer size was set
to 1 s (44100 samples). Simulation execution time served
as a performance estimation. Each test was performed
10 times to calculate the mean value and the standard
deviation. In order to achieve the real-time performance,
the calculation time had to be lower than 1 s. The results
are collected in Table I and in Figs. 1–4.

Firstly, it is important to note that variant 1 of the
algorithm cannot perform in real time on tested devices
— even for the smallest grids (8 × 8), the calculation
time for a 1 s long sample was longer than 1 s. So, the
use of variant 2 is a necessity. Variant 2 performance
gain over variant 1 is large enough even for a single core



A-26 M. Pluta, B. Borkowski, I. Czajka, K. Suder-Dębska

TABLE I

2D simulation time (in s, mean value from 10 test runs)
for a sound sample 1 s long. Results allowing real time
operation (below 1 s) are marked in bold.

Variant 1 Variant 2

Grid size
GeForce
GT 750M

Core i7-
4700HQ
(4 cores)

GeForce
GT 750M

Core i7-
4700HQ
(4 cores)

Core i7-
4700HQ
(1 core)

8× 8 1.467 1.115 0.053 0.01 0.043
16× 16 1.467 1.182 0.05 0.03 0.18
24× 24 1.474 1.236 0.06 0.07 0.415
32× 32 1.502 1.281 0.07 0.155 0.74
40× 40 1.538 1.36 0.13 0.214 1.009
48× 48 1.603 1.393 0.16 0.347 1.35
56× 56 1.747 1.449 0.21 0.453 1.73
64× 64 1.791 1.572 0.21 0.528 2.107
72× 72 1.882 1.743 0.32 0.756 2.63
80× 80 2.029 1.888 0.34 0.972 3.12
88× 88 2.268 2.042 0.44 1.041 3.697
96× 96 2.402 2.17 0.45 1.192 4.399

104× 104 2.493 2.337 0.61 1.579 5.08
112× 112 2.939 2.51 0.63 1.682 5.9
120× 120 3.085 2.736 0.76 1.573 6.694
128× 128 2.93 2.931 0.72 1.969 7.64
136× 136 3.62 3.282 1.03 2.343 8.64
144× 144 4.074 3.551 1.02 2.647 9.578
152× 152 4.432 3.823 1.57 2.788 10.618
160× 160 4.923 4.057 1.57 3.184 11.8
168× 168 5.31 4.369 1.88 2.97 12.893
176× 176 5.767 4.67 2.3 3.328 14.14
184× 184 6.242 5.02 2.431 3.794 15.4
192× 192 6.539 5.363 2.28 4.249 16.96
200× 200 7.092 5.735 2.67 4.102 18.224
208× 208 7.517 6.122 3.29 5.58 19.715
216× 216 8.19 6.514 3.53 6.034 21.4
224× 224 8.557 6.949 3.24 5.306 23.024
232× 232 9.247 7.36 3.79 5.933 24.648
240× 240 9.58 8.872 3.85 6.83 26.686
248× 248 9.965 9.534 4.09 7.31 28.154
256× 256 10.359 9.979 3.73 7.919 30.481

of the CPU to perform in real time with small grids.
Secondly, an interesting fact is that a middle-class GPU
performs significantly faster than a top-class CPU even
though GPU calculations involve copying data through
the PCI Express bus in both directions. GPU can work
in real time with 128×128 grid, while CPU handles only
80× 80 grid (about 2.5 times less cells). In case of 128×
128 grid, GPU’s calculation time is more than 2.5 times
shorter than CPU’s.

CPU calculations that heavily utilize all cores pose a
problem. As it can be seen in Fig. 1, standard devia-
tions for CPU calculation times are very large compar-
ing to almost non existent in case of GPU. As a conse-
quence, any precise estimation of fully parallelized CPU

Fig. 1. Comparison between GPU and CPU in vari-
ant 2 of the 2D algorithm (mean values with standard
deviations).

Fig. 2. Comparison between 1 core and 4 cores of CPU
in variant 2 of the 2D algorithm.

Fig. 3. Comparison between two variants of the 2D al-
gorithm run on the CPU.

Fig. 4. Comparison between two variants of the 2D al-
gorithm run on the GPU.



Sound Synthesis Using Physical Modeling on Heterogeneous Computing Platforms A-27

execution time would be impossible. The reason for this
is the fact that during simulation, the CPU handles also
the operating system, while the only task of GPU is the
simulation. If only one CPU core is utilized (Fig. 2), ex-
ecution time can be estimated more precisely, but it is,
as expected, 4 times longer.

In case of GPU it can be observed that some grid size
increments actually shorten the calculation time. It hap-
pens when the grid side is a multiple of 32 (e.g. from
120 × 120 to 128 × 128, or from 216 × 216 to 224 × 224).
So, it is better to use the total number of work items that
is a multiple of 1024. This fact needs more considera-
tion, but is most probably related to the GPU hardware
architecture.

Transition from variant 1 to variant 2 brings much
smaller improvement in case of CPU (Fig. 3) than GPU
(Fig. 4). The reason is that variant 2 reduces the time
needed for copying memory buffers to and from the com-
pute device. In case of CPU, there is no need for this
operation, so no gain is observed. The gain is large in
case of GPU, where memory copying was one of the per-
formance limiting factors.

In further test, the impact of the wave buffer size on
the performance in 2D V2 algorithm was studied (Fig. 5).
Buffer sizes from 1 to 100 (step 1) and from 441 to 44100
(step 441) samples were examined. For each buffer size,
the largest grid that was calculated in time shorter than
buffer length (real-time requirement) was adopted as the
the result. GPU performed in real time for its largest
possible grid (128× 128) already with a 39 sample buffer
(less than 1 ms). Further enlarging of the buffer was not
necessary. With the same buffer length, CPU needed the
grid to be two times smaller in each dimension (40 ×
40) as its largest real-time performing grid. Small buffer
required in the case of GPU allows for a very responsive
instrument control.

Fig. 5. The largest 2D grid simulated with V2 algo-
rithm for various wave buffer sizes.

In some cases (possibly with a very long simulation, to
avoid accumulation of rounding errors) there may be a
need for double-precision (64-bit) calculations. In order
to maintain the real-time performance of 64-bit V2 algo-
rithm, it was necessary to reduce grid size from 128×128
to 104× 104 in case of GPU, and from 80× 80 to 72× 72

in case of CPU. Double precision impact is smaller in
CPU case, but even for GPU it is not as large as the
32-times drop in processing power between 32 and 64 bit
indicates (according to specifications). It is because only
a part of the kernel time is dedicated for floating point
calculations, and the most part (e.g. indexing) uses inte-
ger numbers.

TABLE II

3D simulation time (in s, mean value from 10 test runs)
for a sound sample 1 s long. Results allowing real time
operation (below 1 s) are marked in bold.

Grid size GeForce GT 750M Core i7-4700HQ
8× 8× 8 0.072 0.315

12× 12× 12 0.14 1.278
16× 16× 16 0.24 2.616
20× 20× 20 0.53 3.998
24× 24× 24 1.1 7.165
28× 28× 28 2.652 10.627
32× 32× 32 2.981 21.048

The most interesting case is the 3D simulation.
The test procedure was the same as the one used for
comparing V1 and V2 algorithm (10 test runs for each
grid size, 1 s wave buffer calculated). Grids ranged from
8×8×8 to 32×32×32 with the increment of 4. The re-
sults are presented in Table II and Fig. 6.

Fig. 6. Comparison between GPU and CPU in 3D al-
gorithm.

GPU can work in real time with 20×20×20 grid, while
the CPU handles only 8 × 8 × 8 grid (about 15.5 times
less cells). In case of 20×20×20 grid, GPU’s calculation
time is about 7.5 times shorter than this of CPU. Despite
similar algorithms, performance gap between the devices
in case of 3D grid is much larger than in case of 2D grid.

6. Conclusions

A feasibility study of GPU-accelerated sound syn-
thesis based on physical modeling implemented using
OpenCL framework has been presented. Middle-class
mobile (notebook) GPU performance was compared to
the performance of top-class mobile CPU in a series



A-28 M. Pluta, B. Borkowski, I. Czajka, K. Suder-Dębska

of tests involving finite difference models of two instru-
ments: a square membrane in 2D grid and a cubical block
in 3D grid. The aim was to determine the largest 2D and
3D grid size that can be calculated in real time. Using
a parallelized algorithm, the GPU performed 2.5 times
faster than the CPU, allowing 128 × 128 FD grid to op-
erate in real time. The difference was even larger in 3D,
where GPU was 7.5 times faster than CPU, allowing the
use of 20 × 20 × 20 FD grid.

Synchronization issues in parallel GPU calculations
were discussed and addressed. The effect of transi-
tion from 32-bit to 64-bit precision was also determined
(the largest 64-bit GPU FD grid is 104× 104), as well as
an impact of wave buffer length used in calculations —
with sampling frequency of 44100 Hz it is possible to use
buffers shorter than 1 ms, which is much better than the
threshold needed for real time-control of the instrument.

The results indicate that GPUs can significantly speed
up real-time musical instrument simulations, allowing to
develop more complex and realistic models. More power-
ful desktop-class GPUs should perform significantly bet-
ter. Taking into account that a personal computer can be
equipped with up to 4 GPUs, and even some notebooks
utilize 2, the results are encouraging. OpenCL allows for
simultaneous calculations on different types of devices,
such as CPUs and GPUs, further increasing available
processing power.

There are, however, some issues that need to be re-
solved before designing large, complex, real-time instru-
ment models, spanning through a number of different
compute devices. One of the more important is the prob-
lem of synchronization between threads. If parts of the
instrument are to be simulated on separate devices, a
method of efficient communication between those devices
has to be developed, and OpenCL does not provide a
simple, efficient solution here. Another one is fine-tuning
the algorithm to take advantages of various types and
sizes of memory accessible to different compute devices,
and more generally, to tune it to the architecture of the
system hardware.

Considering the fact that general-purpose computing
on GPUs, or more generally — heterogeneous computing,
is a rather novel technique with only a few prototype
implementations in the field of sound synthesis, there is
much more research to be done in this area, but also
much to be gained.

References

[1] C. Roads, J. Strawn, C. Abbot, J. Gordon, P. Green-
spun, The Computer Music Tutorial, MIT Press,
Cambridge MA 1996.

[2] What is Heterogeneous Computing?,
http://developer.amd.com/resources/heterogeneous-
computing/what-is-heterogeneous-computing/,
visited: 21.07.2014.

[3] M. Sosnick, W. Hsu, in 7th Sound and Music
Computing Conference Proceedings, Eds. E. Gómez,
P. Herrera, R. Ramírez, Universitat Pompeu Fabra,
Barcelona 2010, p. 485.

[4] M. Sosnick, W. Hsu, in Proceedings of the In-
ternational Conference on New Interfaces for Mu-
sical Expression, Eds. A.R. Jensenius, A. Tveit,
R.I. Godøy, D. Overholt, University of Oslo and Nor-
wegian Academy of Music, Oslo 2011, p. 264.

[5] W. Hsu, M. Sosnick-Pérez, ACM Queue 11, 40
(2013).

[6] M. Pluta, in Proceedings of Forum Acusticum 2014,
Ed. B. Borkowski, The Polish Acoustical Society,
Krakow 2014, p. 227.

[7] S.A. Van Duyne, J.O. Smith III, in Proceedings of the
International Computer Music Conference, ICMC-93,
The Computer Music Association, Tokyo 1993, p. 40.

[8] U.R. Kristiansen, E.M. Viggen, Computational Meth-
ods in Acoustics, Norwegian University of Science and
Technology — NTNU, Department of Electronics and
Telecommunications, Trondheim 2010.

[9] A.B. Adib, arXiv:physics/0009068v3, 2000.
[10] P. Filipp, A. Bergassol, D. Habault, J.P. Lefebvre,

Acoustics: Basic Physics, Theory, and Methods, Aca-
demic Press, San Diego 1998.

[11] A. Dobrucki, Przetworniki elektroakustyczne, WNT,
Warszawa 2007.

[12] V.W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim,
A.D. Nguyen, N. Satish, M. Smelyanskiy, S. Chen-
nupaty, P. Hammarlund, R. Singhal, P. Dubey, in
ISCA ’10 Proceedings of the 37th annual international
symposium on Computer architecture, Eds. A. Seznec,
U. Weiser, R. Ronen, ACM, New York 2010, p. 451.

[13] Nvidia CUDA Zone, https://developer.nvidia.com/
cuda-zone, visited: 21.07.2014.

[14] OpenCL, https://www.khronos.org/opencl/, visited:
21.07.2014.

[15] K. Karimi, N.G. Dickson, F. Hamze,
arXiv:1005.2581v3, 2011.

[16] J. Fang, A.L. Varbanescu, H. Sips, in Proceedings
of the 2011 International Conference on Parallel Pro-
cessing, Eds. G.R. Gao, Y. Tseng, IACC, Taipei 2011,
p. 216.

[17] V. Hindriksen, OpenCL vs CUDA Misconceptions,
http://streamcomputing.eu/blog/2011-06-22/opencl-
vs-cuda-misconceptions/, 2011, visited: 21.07.2014.

[18] AMD OpenCL Zone, http://developer.amd.com/
tools-and-sdks/opencl-zone/, visited: 21.07.2014.

[19] Intel SDK for OpenCL Applications,
https://software.intel.com/en-us/vcsource/tools/
opencl-sdk, visited: 21.07.2014.

[20] OpenCL — Nvidia Developer Zone,
https://developer.nvidia.com/opencl,
visited: 21.07.2014.

[21] AMD Staff, OpenCL and the AMD APP SDK v2.4,
http://developer.amd.com/resources/documentation-
articles/articles-whitepapers/opencl-and-the-amd-
app-sdk-v2-4/, 2011, visited: 21.07.2014.

[22] OpenCL Tutorials 1 — Quickstart,
http://opencl.codeplex.com/wikipage?title=
OpenCL%20Tutorials%20-%201, visited: 21.07.2014.

http://developer.amd.com/resources/heterogeneous-computing/what-is-heterogeneous-computing/
http://developer.amd.com/resources/heterogeneous-computing/what-is-heterogeneous-computing/
http://arXiv.org/abs/physics/0009068v3
http://dx.doi.org/10.1145/1815961.1816021
http://dx.doi.org/10.1145/1815961.1816021
http://developer.nvidia.com/cuda-zone
http://developer.nvidia.com/cuda-zone
http://khronos.org/opencl
http://arXiv.org/abs/1005.2581v3
http://dx.doi.org/10.1109/ICPP.2011.45
http://dx.doi.org/10.1109/ICPP.2011.45
http://dx.doi.org/10.1109/ICPP.2011.45
http://streamcomputing.eu/blog/2011-06-22/opencl-vs-cuda-misconceptions/
http://streamcomputing.eu/blog/2011-06-22/opencl-vs-cuda-misconceptions/
http://developer.amd.com/tools-and-sdks/opencl-zone/
http://developer.amd.com/tools-and-sdks/opencl-zone/
http://software.intel.com/en-us/vcsource/tools/opencl-sdk
http://software.intel.com/en-us/vcsource/tools/opencl-sdk
http://developer.nvidia.com/opencl
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-and-the-amd-app-sdk-v2-4/
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-and-the-amd-app-sdk-v2-4/
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-and-the-amd-app-sdk-v2-4/
http://opencl.codeplex.com/wikipage?title=OpenCL%20Tutorials%20-%201
http://opencl.codeplex.com/wikipage?title=OpenCL%20Tutorials%20-%201

