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Two-element cylindrical electrostatic lens systems allowed to control low energy electron or charged particle
beam have great importance. In this context, dynamic arti�cial neural network using nonlinear autoregressive
exogenous model has been utilized to predict optimum linear magni�cation and overall voltage values for these
lens designs. The focusing characteristics of electron beam in two-element cylindrical lens systems are investigated
with two di�erent nonlinear autoregressive exogenous based arti�cial neural network models. First arti�cial neural
network model is employed for predicting of voltage ratios of lenses and magni�cation values. This model inter-
polates among the object (P ) and image positions (Q) and �nally �nds optimum voltage ratios and magni�cation
values through training dataset. Due to the deviations of electron trajectories in a real lens system, the spherical
aberration e�ects are also taken into account to determine the optimal lens parameters. Therefore, the second
arti�cial neural network model is constructed for predicting spherical aberration coe�cients in image point. For
each of arti�cial neural network models, training, test and validation data set are obtained from SIMION 8.1 ion
and electron optics software. Arti�cial neural network model outputs are compared with the SIMION data and
very good agreements are found. While arti�cial neural network is frequently applied in di�erent �elds, this is the
�rst study that uses dynamic arti�cial neural network to predict the parameters of electrostatic lens. It is believed
that this pioneering work will be a guide for the future investigations in lens design systems.
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1. Introduction

Electrostatic lenses are useful optical tools in control-
ling beams of electrons or charged particles. Therefore,
a development of electrostatic lenses has a great interest
for a long time and has been focused on the determi-
nation of optical properties with high accuracy over the
last years [1, 2]. Among these lenses, two-element cylin-
drical electrostatic lens is widely used geometry in low
energy charged particle selection systems [3�9]. Experi-
ments of low energy electrons or charged particles require
detailed research for two-element cylindrical electrostatic
lens area. This investigation depends on the understand-
ing of sensitive changes in optical parameters of lenses
as a function of their voltage ratios. The in�uence of
voltages can be directly observed in object�image posi-
tion diagram (P�Q diagram) called also as design curves.
In this diagram, the magni�cation and voltage ratios can
both be precisely determined in given relation between
the object (P ) and image positions (Q) of charged par-
ticles. The only experimental P�Q curves data is given
by Spangenberg and Field for real object (P ) and im-
age positions (Q) [9]. During the development of optical
systems for charged particle beams, di�erent methods
have been employed to provide an optimum design in
low-energy charged particle spectrometers [6�10]. Spher-
ical aberrations coe�cients for two-element lenses have
been investigated using several methods [11�12].
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In recent years, the arti�cial intelligent algorithms have
become increasingly popular in many �elds of physics
that have a wide range of applications [13�15]. These
new computer-aided algorithms are similar computa-
tional tool designed on the nervous system of human
brain and provide successful results [16]. In this ap-
proximation, network learn the relation between input
and desired output data with a set of given examples
and discover an optimum output data for an unknown
input. During the network training process, the infor-
mation transmits from one neuron to another. Thus, in-
formation from example data set is processed for a suit-
able output data. Over the past decade, arti�cial intel-
ligent applications have been developed to increase the
performance of charged particle probe instruments [17�
21]. In this study, nonlinear autoregressive exogenous
(NARX) model based arti�cial neural network (ANN)
which is a kind of arti�cial intelligent algorithm has been
used. The main objective is to demonstrate the bene�t
and sensitivity of NARX based ANN prediction for two-
element cylindrical electrostatic lens. In this approach,
we can �nd future values of lens parameters depending
on the training dataset.

This study is organized as follows. Section 2 of this
study describes two-element electrostatic lens and lens
parameters to control charged particle beams. Detailed
information about the NARX based dynamic arti�cial
neural network model is given in Sect. 3. The compar-
ison results are given in Sect. 4. In this section, the
MATLAB simulation results have been compared with
SIMION software data. Finally, the conclusion and fu-
ture works regarding the prediction of electrostatic lens
parameters are given.
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2. Charged particle lens systems

The motion of charged particles in lens region should
be calculated for maximum ease of use in experiments.
The motion of charged particles can be described with
the �rst and second focal points (F1 and F2, respectively)
and the object (P ) and image points (Q). Two-element
electrostatic lenses are commonly used to control electron
beam especially in low energies. These lenses consist of
two closely spaced cylinders held at potentials V1 and V2.
They have been modeled and illustrated in Fig. 1. In this
�gure, D represents the diameter of lens. D is commonly
used as a unit of length for all parameters such as P/D.
The pattern of spherical aberration in image point is also
represented in Fig. 1.

Fig. 1. Cross-sectional view of a two element cylin-
drical electrostatic lens. Equipotential lines are repre-
sented with green lines for the applied di�erent voltages
(V1 and V2). The paths of charged particle beam are
shown as blue rays for di�erent trajectory.

The paths of charged particles are determined by fun-
damental lens parameters. One of the parameters is lin-
ear magni�cation (M). Linear magni�cation is calcu-
lated from the ratio of the �nal to initial beam diameter,
r2/r1, respectively. In addition, M can be obtained by
using

M = − f1
P − F 1

= −Q− F 2

f2
, (1)

where the �rst and second mid-focal points are repre-
sented by f1 and f2, respectively. In image point, the
beam diameter is de�ned by the linear magni�cation.
Another important parameter in lens design is spherical
aberration coe�cient in image point (Q). Electrons en-
tering the lens system from a di�erent angle are focused
in di�erent image points. This is called as a spherical
aberration e�ect in lenses. For given rays with di�erent
half angle (α0) in object point, the spherical aberration
in image point (Q) is represented in Fig. 1. The spherical
aberration coe�cient (Cs) is de�ned by

∆r = −MCsα
3
0,

where ∆r is the radius of the disc in image plane,M is the
linear magni�cation, and α0 is the maximum half angle
for electrons entering from a given object distance (P ).
The ratio of Cs/D for decelerating lens (V1/V2) to accel-
erating lens (V2/V1) are obtained with the formula

Cs(V1/V2)

Cs(V2/V1)
= M4

(
V2
V1

)3/2

,

where Cs(V1/V2) stands for the spherical aberration coef-
�cient when electron is retarded from second lens voltage
(V2) to �rst lens voltage (V1) [7].

On the other hand, lens voltages are a�ected the tra-
jectories of charged particle beam. Therefore, the po-
tential (V (r)) has to be calculated to �nd the trajectory
of a particle in lens region. There are di�erent methods
such as the boundary element method [7], �nite di�erence
method [8], and �nite-element method [22] for the precise
calculation of the potential distributions along the opti-
cal axis of charged particle beam. Among these meth-
ods, SIMION program uses the �nite-di�erence method
to solve the Laplace equation [23]. The Laplace equa-
tion is

∇2V(r,z) = 0, (2)

where V(r,z) is the potential in lens region. When the
potential at any point in the trajectory of a charged par-
ticle is calculated, the working space is changed for the
calculation of potential in a neighbor point by iteration
technique. The working space is described as a regular
lattice of di�erent neighbor points. Figure 2 represents

Fig. 2. A square lattice of points separated by
lengths h. Points are marked by red circles. The center
point is at (x, y).

the lattice of �ve points. In �ve-point �nite di�erence
method, the potential of center point in this lattice can
be found with the aid of the four outer point potentials.
In Cartesian coordinates, the potential at center point on
the lattice is calculated by using Eq. (3) as shown below

V(x,y) =
V(x−h,y) + V(x,y−h) + V(x+h,y) + V(x,y+h)

4
. (3)

SIMION software solves the Laplace equation and
calculates the paths of charged particles in speci�ed
workspace. This software uses nine-point �nite di�erence
method. In nine point di�erence method, four further
neighbor points are calculated to increase the accuracy
of the numerical solution. This calculation takes more
time depending on the number of iteration.
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3. Designing of NARX based dynamic arti�cial

neural network model

Prediction algorithms have become popular among the
academic �eld. One of the main reasons is the capabil-
ity of these algorithms in solving unde�ned relationship.
The low computational burden is also another character-
istic of these algorithms that provides desired output in
a short minute. Some of the best known prediction al-
gorithms are arti�cial neural network, genetic algorithm,
particle swarm optimization [24, 25]. It has been proved
that arti�cial neural network has better performance
than some of algorithms in terms of nonlinearity, and
limited data [26]. Therefore, this algorithm is preferred
for data analysis. There are several types of arti�cial neu-
ral network model such as multilayer feed forward, self-
organizing map, radial basis function and NARX. NARX
is a kind of recurrent arti�cial neural network, which has
feedback communication. In this type of ANN, we can
predict next values of a time series using previous values
of time series data. It is commonly used in time-series
problem and provides promising result for long-term de-
pendences. NARX based ANN can solve complex rela-
tionship between input and output data. Additionally,
fault tolerance makes this neural network far superior to
the well-known prediction algorithm. Due to the distin-
guished features, NARX based dynamic arti�cial neural
network model is used for prediction of two-element elec-
trostatic lens parameters. These parameters are compat-
ible with time series data format. Time series refer to
the sequence of vector points, y(t), t = 0, 1, . . . , where
t corresponds to passing time. Dynamic arti�cial neural
network focuses on predicting of time series data at time
t + d, from the N time before at time t. The NARX
equation is

y(t+ d) = f(x(t), x(t− 1), x(t− 2), . . . , x(t− nx),

y(t− 1), y(t− 2), . . . , y(t− ny)), (4)

where x(t) denotes input of the time series at time t, and
fi is a nonlinear function. d, nx (input delay) and ny
(output delay) are the delays of the system [27]. In this
equation, y(t + d) is the output of the time series and
obtained from former values of input and output val-
ues. The estimation of future values of vector y(i), based
on the training data, allow addressing of time-critical
conditions. The architecture of designed NARX based
ANN model is shown in Fig. 3 [29]. This NARX model
consists of input, hidden, and output layers. The ob-
ject (P ) and image positions (Q) are used as input vari-
ables. There is no common rule regarding the number

Fig. 3. Architecture of NARX based ANN model.

of hidden layers. The number is generally found with
trial and error method [29]. In designed model, there
are twenty neurons in hidden layer and sigmoid transfer
function is utilized. In addition, feedback delayed out-
puts values of y(t) are used as input variable. In this
way, the best prediction of voltage ratios and magni�ca-
tion values is achieved.

4. Results

In the �rst step of the arti�cial neural network model
development, two-element electrostatic lens system is
simulated using the SIMION 3D 8.1 ion and electron op-
tics software. Obtained SIMION data is used as training,
test and validation dataset for ANN model. Based on
time series approach, appropriate dynamic ANN model
is constructed to predict the voltage ratios and magni�ca-
tion value for two-element electrostatic lens design. De-
signed time-series ANN model consists of two input neu-
rons (P and Q) and two output neurons (M and V2/V1).
Data analysis is carried out with 100 sample data. MAT-
LAB Neural Network Toolbox and Statistics Toolbox is
utilized. In MATLAB analysis, ANN model is trained
with 80% of SIMION data. In this way, bias and
weights are adjusted. Testing and validation are carried
out through 5% and 15% of SIMION data, respectively.
The SIMION input data is �rst normalized with the fol-
lowing formula to the range of −1 to +1 to achieve zero
mean. Normalization formula is given with

Xnormalized =
Xi −Xmin

Xmax −Xmin
, (5)

where Xi represents the values to be normalized and the
indices of min and max denote the minimum and max-
imum values for a set data, respectively. The predic-
tion performance of the ANN model has been evaluated
with four statistical metrics. These are mean square er-
ror (MSE), error histogram, regression, and input-error
cross-correlation.
Mean square error (MSE) is determined as graphical

demonstration of the scattered data. Error histogram is
the average of the squared distinction between ANN pre-
dicted values (Xpt) versus SIMION output values (Xt)
for a number of N trials [30]. MSE is found with

MSE =
1

N

N∑
t=1

(Xpt −Xt)
2
. (6)

Error histogram of designed network is presented
in Fig. 4a. This histogram shows the distribution of er-
rors with the training, test, and the validation dataset.
In this histogram, zero error means concentrated point
of error which is shown by orange line. The mean square
errors at each epoch for the three di�erent datasets are
shown in Fig. 4b. The MSE value of the designed model
was 3.129 × 10−7 and was achieved at the 264th epoch.
In this analysis, the process of training stops when the
validation error reaches steady-state. The green line
shows the MSE for the validation dataset, the blue line
for the training set, the red line demonstrate for the test
set. These results indicate that there is a high perfor-
mance result.
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Fig. 4. (a) Error histogram of a 20 hidden layered time
series neural network indicate zero mean Gaussian dis-
tribution. (b) Mean square error of training, validation
and test datasets.

The cross correlation sequence values versus lag (de-
lay) number are shown in Fig. 5. The correlation be-
tween errors and the input sequence x(t) is found with
input-error cross-correlation. For absolutely accurate es-
timation, whole correlations must be zero. It is seen in
this Fig. 5 that there is an accurate cross-correlation.

Fig. 5. Cross-correlation of designed ANN model.

Fig. 6. Regression (R) values of training, validation
and test datasets.

The correlation between outputs and target values are
determined through regression (R) value. For a detailed
analysis of ANN model, regression results of training, val-
idation and test dataset are presented in Fig. 6. It was
found that ANN model has the high regression values in
training, validation, and testing are 1, 1, and 1, respec-
tively. An R value of 1 indicates a close relationship, 0 a
weak relationship. Linear regression equation is given
with the formula of y = ax + b, where b is the crossing
point of y and a is the slope of the graph given below

a =

∑
y − b

∑
x

n
, (7)

b =
n
∑

(xy)− (
∑
x)(
∑
y)

n
∑
x2 − (

∑
x)2

, (8)

where x is the input variable and n is the time period.
Comparison of the normalized ANN output data with

the SIMION data is given in Fig. 7a. To provide a visual
reference, the comparison between the predicted ANN
data and SIMION data including the error bars is pre-
sented in Fig. 7b. The comparison results show that
the ANN prediction accuracy of voltage ratios for two-
element electrostatic cylinder lenses close to 97%.

Fig. 7. (a) Predicted data of ANN model for a set of
voltage ratios of two element lens with P and Q values
against SIMION input data set. (b) The comparison of
SIMION and ANN model prediction data.

Another time series ANN model is constructed to ob-
tain optimum situation of lens design. In this approach,
spherical aberration coe�cients in image points (Q/D)
are predicted usingM and voltage ratios for the same lens
design. The Levenberg�Marquardt algorithm is used to
train ANN. Regression analysis is carried out to measure
the performance of this ANN model. Analysis results
are given in Fig. 8. ANN model has 98.8% for training,
99% for test, 98.2% for validation regression values, re-
spectively. The obtained results show that time series
ANN model can be used to predict spherical aberration
coe�cients using voltage ratios and magni�cation values
in cylindrical electrostatic lens. This analysis is a very
simple technique for predicting the aberrations with high
accuracy.
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Fig. 8. Regression (R) values of ANN for obtaining
spherical aberrations.

5. Conclusions

In this study, NARX based dynamic arti�cial neu-
ral network is used to predict optical properties of two-
element cylindrical electrostatic lens. To my knowledge,
this is the �rst study that uses dynamic ANN to predict
the focusing parameters of electron beam with low spher-
ical aberrations in image point. It is clearly shown that
the results obtained from ANN are in good agreement
with the reference data. In this approach, future values
of lens parameters can also be found with high sensitiv-
ity. Instead of simulation data, this technique can be
validated with experimental data. In addition, di�erent
types of heuristic algorithms can be applied to the elec-
trostatic lens systems to predict parameters in the future.
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