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The spin—Hamiltonian parameters (the g factors g; and the hyperfine structure constants A;, ¢ = z, y, z) and
local structure of the Cu®" center in PbTiOj3 are theoretically studied by using the perturbation formulae of these
parameters for a 3d° ion in an orthorhombically elongated octahedra. The orthorhombic center is attributed to
Cu®" occupying the host Ti*T site associated with a nearest-neighbouring oxygen vacancy Vo along the c-axis, and
the impurity Cu?* off-center displacement AZy, (= 0.18 A) is smaller than that of the host Ti*" site (AZy ~ 0.3 A).
Meanwhile, the planar Cu?**~0?~ bonds are found to experience the relative variation AR (= 0.098 A) along the
a- and b-axes, respectively, due to the Jahn-Teller effect and the size mismatching substitution of Ti*" by Cu®*.
The theoretical spin-Hamiltonian parameters based on the above defect structure agree well with the observed

values.
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1. Introduction

PbTiO3 as a member of ferroelectric perovskite fam-
ily is a potential material with the technological applica-
tions in ferroelectric-volatile memory devices and piezo-
electric actuators [1-3]. The physical and chemical prop-
erties of perovskites may be selectively changed by dop-
ing with transition-metal (TM) ions. For understanding
the properties caused by these doping ions, many electron
paramagnetic resonance (EPR) spectra of PbTiO3 doped
with TM impurities have been made [4-8]. The EPR
technique is a powerful tool to study the defect model
and defect structure of paramagnetic impurity centers
in crystals. These studies show that divalent and triva-
lent states of substitutional 3d™ ions at Ti** site can be
charge compensated by a nearest-neighbour oxygen va-
cancy Vo, and the microstructure of these M"™ — Vg
centers has attracted the attention of many investiga-
tors [9-11]. Amongst these TM ions, Cu?* (3d”) ion is a
model system with a single 3d hole, corresponding to only
one ground state and one excited state under ideal octa-
hedral crystal-fields. EPR studies for Cu?* can provide
important structural and electronic information of the
doped materials and are of specific significance. For ex-
ample, Warren et al. [12| performed EPR studies on Cu?*
doped in PbTiO3, and the spin-Hamiltonian (SH) param-
eters (the g factors g; and the hyperfine structure con-
stants A;, i = x, y, z) were also measured. The observed
g factor (g, ~ 2.051, g, ~ 2.065, and g, ~ 2.340 [12]) of
the orthorhombic center for PbTiO3:Cu?* was very close
to that (g, ~ 2.106, g, ~ 2.076, and g, ~ 2.381 [13])
for the impurity Cu?t ion doped in LiNbOj with or-
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thorhombic [CuOs5]®~ cluster. Therefore, there are good
reasons to assume that the observed SH parameters of
the orthorhombic center for PbTiO5:Cu?t was due to
the impurity Cu?* substituting Ti** site with one near-
est neighbour oxygen vacancy Vo along the c axis as the
compensator similar as LiNbO3:Cu®* [13].

Up to now, however, the above experimental SH pa-
rameters have not been theoretically explained, and the
information about local structures of the impurity Cu?*
in PbTiO3 has not been obtained yet. Considering that
microscopic mechanisms of the SH parameters and in-
formation of impurity local structures can be helpful to
understand the properties of these TM ion doped mate-
rials, further theoretical investigations on these SH pa-
rameters and the local structures for the Cu?* center in
PbTiOj3 are of scientific and technical significance. In this
paper, the high (fourth) order perturbation formulae of
the SH parameters for a 3d° ion under orthorhombically
elongated octahedra are adopted for the analysis of the
above Cu?t center. Based on these studies, some useful
information of defect structures for Cu?* in PbTiO3 can
be acquired.

2. Calculations

In PbTiO3 crystal, both the host Pb%* and Ti** ions
suffer large displacements from their corresponding oxy-
gen planes by about 0.47 and 0.3 A at room temperature,
resulting in a colossal tetragonality of 6.5% along with
a 0.75 C/m? spontaneous polarization [14, 15]. When
the impurity Cu?* ion enters the lattice of PbTiOs, it
may occupy the Ti*T site due to similar ionic radius, de-
spite of its significant charge mismatch. Since Cu?* has
less charge as compared with the replaced Ti**, one near-
est neighbour oxygen vacancy Vo may occur along the
c-axis as compensator, forming [CuO5]|3~ cluster. For the
Jahn-Teller ion Cu?T, the planar ligands can suffer a rel-
ative bond length variation due to the Jahn-Teller effect
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via vibration interaction by compressing and stretching
the Cu?T-02~ bonds along the a- and b-axes, respec-
tively, which can bring forward moderate orthorhombic
distortion to the impurity center. Meanwhile, the charge
mismatching substitution of Ti** by Cu?T may also lead
to some modifications of the planar bond lengths. On the
other hand, the impurity Cu?t off-center displacement
AZ;, would be dissimilar to that (AZy ~ 0.3 A [15]) for
the host Ti™ site.
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Fig. 1. Projective view of the impurity Cu®>" center
in PbTiO3 crystal with one oxygen vacancies adjacent
along C4 axis.

As a result, the local structure of the impurity center
can be described by the [CuO5]®~ cluster and the impu-
rity off-center displacement (characterized by AZy) and
the relative planar bond length variation (characterized
by AR) (see Fig. 1). Consequently, the impurity-ligand
bond lengths are divided into three groups, i.e., the pla-
nar ones labeled as “R,” and “ Ry” along the a- and b-axes
due to the bond length variation AR and the off-planar
one labeled as “R3” along the c-axis. The angles between
the planar bond lengths R; and Ry and the c-axis are de-
fined as A, and 6, respectively. The local bond lengths
and bond angles are determined as

Ry ~[(RL — AR)? + AZ})'/2,
Ry~ [(RL +AR)* + AZ)V2 Ry = R — AZ,

costh ~ AZy, /Ry, cosbly~ AZy/R,. (1)
Thus, the impurity-ligand bonding lengths are unlike the
host Ti~O distances R ~ 2.076 Aand R, ~1.952 A [15]
parallel and perpendicular to the c-axis for the center of
the oxygen octahedron in the host PbTiOs.

For a Cu?* (3d”) ion in orthorhombically elongated oc-
tahedra, its lower orbital doublet 2 E, would be separated
into two singlets A4 (0) and *A’,(¢), with the latter ly-
ing lowest [16, 17]. Meanwhile, the higher cubic orbital
triplet 275, would be split into three singlets 2Bz ((),
2Bag(n) and ?Bsg(€) [16, 17]. Considering that the spin—
orbit parameter ¢) (=~ 150 cm™' [18]) of ligand O®~ is
much smaller than that () (=~ 829 cm™! [19]) of the cen-
tral ion Cu?*, the contributions to SH parameters due to
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the spin—orbit parameter of ligand via covalence effect is
small and can be omitted, as in the conventional crystal-
field theory. Then, the high order perturbation formulae
of the SH parameters based on the conventional crystal-
field model [18] containing merely the central ion orbital
and spin—orbit coupling contributions can be reasonably
adopted here. Thus, we have
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Here g5 (=~ 2.0023) is the spin-only value. k (~ N?) is the
orbital reduction factor, characteristic of the covalence ef-
fect of the studied system. ¢ and P are, respectively, the
spin—orbit coupling coefficient and the dipolar hyperfine
structure parameter for the 3d” ion in crystals. Because
of the covalence reduction effect for 3d™ ions in crystals,
we have [20, 21]:

¢~ N%), P =~ N?P,. (3)
Here, for a free Cu?* ion, the dipolar hyperfine structure
parameter Py (=~ 388 x 107% ¢cm™! [22]). The isotropic

)
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core polarization constants satisfies the relationship k =
—2x/(3(r=3)) [23]. Here x is characteristic of the density
of unpaired spins at the nucleus of the central ion, and
(r=3) is the expectation value of the inverse cube of the
radial wave function of the 3d orbital in crystals in terms
of the related free-ion value (r=3)o multiplying the cova-
lence factor N. From the data (r—3)y ~ 8.252 a.u. [16]
and xy ~ —3.12 a.u. [23] for Cu?" in some oxides, the
value k ~ 0.29 may be estimated and used for the stud-
ied system here.

The denominators E; (i = 1—4) stand for the en-
ergy separations between the excited 2A14(6), 2Bi4(¢),
®Bag(n) and *Bsg(€) and the ground *Aj,(¢) states, re-
spectively. They are determined from the energy matrix
for a 3d° ion under orthorhombic symmetry in terms of
the cubic field parameter D, and the orthorhombic field
parameters D, Dy, D¢ and D,

Ey = 4Dg+ 5D, E3~ 10D,

E3 ~ 10Dy — 3Ds + 5D¢ + 3D — 4D,

Ey =~ 10Dy + Dg + 10Dy — 3D¢ + 4D,,. (4)
From the superposition model [24] and the local geomet-

rical relationship of the studied impurity center, the or-
thorhombic field parameters are determined as follows:

Ry\"”
R;
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Here ty ~ 3 and t4 ~ 5 [10, 14, 25-28] are the power-
law exponents due to the dominant ionic nature of the
bonds. As(Ry) and A4(Rp) are the intrinsic parame-
ters, with the reference bond length Ry taken as the av-
erage of the metal-ligand distances (i.e., Ry = (R +
R1)/3 ~ 1.993 A). For 3d" ion in octahedral crystal-
fields, the relationships A4(Rg) ~ (3/4)D4 and the ra-
tio As(Ro)/A4(Rp) is in the range 8-12 for 3d" ions
in many crystals [10, 22, 26-28], we take the average
value As(Rg) ~ 10A4(Rg) here. Thus, the SH parame-
ters (especially the axial and perpendicular anisotropies
Ag = g. — (92 + gy)/2 and 09 = g, — g;) are corre-
lated to the orthorhombic field parameters and hence
to the local structure of the impurity center. For the
studied orthorhombic [CuO5]®~ cluster here, the cubic
field parameter Dy ~ 820 cm™! and the covalence fac-
tor N =2 0.80 can be obtained from the tetragonal Cu?*
center in PbTiO3:Cu®" based on the EPR analysis [10].
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TABLE I

The calculated and experimental spin-Hamiltonian g fac-
tors and the hyperfine structure constants (in 10 *cm™")
for PbTiO3:Cu®".

gz gy gz Az Ay AZ
Cal. |2.0547|2.06502.3336|7.991|10.874| -116.457
Exp. [12]] 2.051 | 2.065 | 2.340 | 7.74 | 9.34 112.05
TABLE II

The local structure bond lengths R; and Rz and R3 (in
A), the angles 6; and 6 (in °), the cubic field parameter
Dq and the orthorhombic field parameters Ds, Dy, De
and D, (in cm™!) for Cu®" center in PbTiOs.

Ry
1.904

Ry
2.099

Rs | 61 | 62
1.813(84.6|85.1

Dq
820

Ds
—2640

Dy
-115

De
~606

Dy,
-32

Thus, there are only two unknown parameters, i.e., the
impurity Cu?* displacement AZ along the c-axis due to
electrostatic repulsion of the Vg and the planar bond
length variation AR along the a- and b-axes in Eq. (1) of
the SH parameters. Substituting these parameters into
Eq. (1) and fitting the calculated SH parameters to the
experimental values, one can obtain

AZ ~0.18 A and AR ~ 0.098 A. (6)
The corresponding theoretical results are collected in Ta-
ble I. Meanwhile, the obtained local structural parame-
ters Ry, Rs, R3, the angles 0, 63 and the orthorhom-
bic field parameters (i.e., D, D¢, D¢ and D,)) are listed
in Table II.

3. Discussion

It can be seen from Table I that the calculated SH pa-
rameters for the Cu®T center in PbTiO3 based on the
local structure distortion obtained in this work show rea-
sonable agreement with the experimental data. Thus,
the defect model of PbTiO3:Cu?t are therefore confirmed
and the defect structure data (i.e., the impurity off-center
displacement AZp; the planar bond length variation AR)
are obtained from the calculations.

(1) The experimental orthorhombic SH parameters for
PbTiO3:Cu?* are conveniently described by the axial
and perpendicular anisotropies Ag and dg. According
to Egs. (1), (2) and (5), the anisotropies arise mainly
from the axial (i.e., the crystal-field parameters Dy and
Dy due to the Vo and the impurity off-center displace-
ment AZ7,) and perpendicular (i.e., the D¢ and D,, due to
the planar bond length variation AR) orthorhombic dis-
tortions of the ligand octahedron. Thus, the observed
Ag (= 0.282) and dg (=~ 0.014) can also be reason-
ably attributed to the impurity off-center displacement
AZ;, (= 0.18 A) due to the electrostatic repulsion of the
effectively positive Vo and the planar bond length vari-
ation AR (~ 0.098 A) due to the Jahn-Teller and size
mismatch effect. Interestingly, similar impurity off-center
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displacements (~ 0.15—0.3 A) were also reported for var-
ious transition-metal ions (e.g., Pt3T, Cu?*, Ru?t, Nit)
on the octahedral Ti*t site in PbTiO3 based on the EPR
analysis [10, 18, 29, 30].

(2) From Table I, one can see the absolute values of
hyperfine structure constants A; (i = z, y, z) are in good
agreement with the experimental findings and the signs
for the calculated A, is negative, but the observed values
given by Warren et al. are positive [12]. Actually, exper-
imental determination of the signs of hyperfine structure
constants for 3d™ ions in crystals is very difficult, many
experiments give them as absolute ones. The signs of the
hyperfine structure constants A; suggested here are the
same as those for Cu?t doped in many crystals based
on the EPR analysis [13, 22, 26] and can be regarded
as reasonable. In addition, previous studies of hyperfine
structure constants for Cu?* ions in various crystals sug-
gest that the constant x (= 0.25—0.35) [10, 13, 21, 22].
The value of x (= 0.29) for PbTiO3:Cu®" obtained in
this work lies within the range and can be considered to
be suitable.

4. Conclusion

The orthorhombic Cu?t center in PbTiO5 can be de-
scribed as the substitutional Cu?* on the Ti*t site in
PbTiOsg, associated with one nearest neighbour Vo along
the c-axis. Based on this model assumption, the planar
bond lengths are found to suffer the relative variation of
about 0.098 A by compressing and stretching the Cu?*—
02~ bonds along the a- and b-axes, respectively, due to
the Jahn—Teller effect and the charge mismatching sub-
stitution. In addition, the impurity Cu?* off-center dis-
placement AZ;, (=~ 0.18 A) is different from the host
AZy (= 0.30 A) Ti*t ion.
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