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Rate Coe�cients of F− Ions in Ar/BF3 Mixtures
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Transport parameters of F− ions in mixtures Ar/BF3 in DC �elds were calculated using Monte Carlo simulation
technique assuming the scattering cross-section set assembled on the basis of Nanbu's technique separating elastic
from reactive collisions. In this work we present characteristic energy and rate coe�cients for low and moderate
reduced electric �elds E/N (N � gas density) and account for the non-conservative collisions.
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1. Introduction

Negative ions are abundant in plasmas containing �u-
orine molecules and which are also relevant for a wide
range of applications. One should bear in mind that
electron a�nity of F atom is the largest of all atoms and
also that electronegative plasmas containing F− ions are
highly reactive. Knowledge of the plasma chemistry and
behavior of negative ions in plasmas is thus necessary
in order to model plasma processing devices. Addition-
ally, recent progress of discharge modeling and simulation
has made contributions to a deeper understanding of the
discharge phenomena and to the optimization of reactor
design or �nding operating conditions.
Plasma enhanced chemical vapour deposition

(PECVD) using BF3 gas is successfully used for
the synthesis of cubic boron nitride (cBN) �lms with
extreme properties similar to diamond. In a dominant
�uorine environment low pressure PECVD [1, 2] pro-
duces the low energy negative ions [3] that a�ect the
chemistry near the surface. The large gaps in under-
standing of chemical kinetics relevant to the ion�BF3

collisions make the progress in the synthesis of cBN �lms
almost empirical. BF3 gas is also a working medium
in neutron detectors [4] where electron�ion pairs are
produced in neutron encounters. The signal detected
due to ion transport produces false counts that should
be avoided. In order to trace such signals, cross-sections
and rate coe�cients are needed for ion transport.

2. Monte Carlo technique

The cross-sections for scattering of BF−
4 ions on Ar

and BF3, and for F− ions on BF3 are calculated by using
Nanbu's theory [5, 6] separating elastic from detachment
collisions. The cross-sections for F− on Ar [7] are used to
calculate rate coe�cients for detachment. The dipole po-
larizability of 3.31×10−30 m3 [8] and 1.64×10−30 m3 [9]
is used for BF3 and Ar target, respectively.
Similar to our recent papers [10, 11] Nanbu's theory

is used to separate elastic from reactive endothermic
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collisions by accounting for the thermodynamic thresh-
old energy and branching ratio according to the Rice�
Rampsperger�Kassel (RRK) theory [5]. Within the RRK
theory internal energy is being distributed among empiri-
cal number of s equivalent e�ective modes of the complex
selected from the total number of atoms involved in the
complex.
The cross-section for exothermic reaction (EXO) form-

ing a super halogen molecular ion BF−
4 is commonly rep-

resented by ion capture cross-section

σexo = βσL, (1)

where σL is the orbiting cross-section [12] and β is the
probability of a speci�c exothermic reaction. When re-
active processes come into play, according to Nanbu's
theory elastic collisions are competing with reactive col-
lisions and as a consequence none of cross-sections is
following Langevin's cross-section energy dependence.
Monte Carlo technique of Ristivojevi¢ and Petrovi¢ [13] is
used to calculate the transport parameters as a function
of E/N .

3. Transport coe�cients

A correct approach to obtain transport parameters of
higher accuracy would be to follow the solutions of quan-
tum mechanical generalization of the Boltzmann equa-
tion than to include the e�ects of inelastic collisions and
internal energy states [14, 15]. The Monte Carlo simula-
tion methods are generally built around the same initial
principles as the related kinetic equations. In this work
we apply the Monte Carlo simulation designed for swarm
particles [16].
The calculated transport coe�cients are the drift

velocity, di�usion coe�cients, ionization and attach-
ment coe�cients, and chemical reaction coe�cients for
ions [17]. Excitation coe�cients are also measured but
seldom used in modeling.
Swarm parameters are generally applied to plasma

modeling and simulations. At the same time, the non-
equilibrium regime in discharges is well represented under
a broad range of conditions by using the Boltzmann equa-
tion with the collision operator representing only binary
collisions.
In this work a Monte Carlo simulation technique for ion

transport that accounts for �nite gas temperature of the
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background gas particles [13] is used to calculate swarm
parameters of F− ions in gas for temperature T = 300 K.

Apart from mobility data for F− in Ar [18], other trans-
port parameters for F− were measured neither for Ar nor
for BF3.

Fig. 1. Mean and characteristic energies of F− ions in
Ar/BF3 mixtures as a function of E/N .

Fig. 2. Rate coe�cients for F− ions in Ar/BF3 mix-
tures as a function of E/N .

In Fig. 1 we show the characteristic energies (di�usion
coe�cient normalized by mobility D/K in units of eV)
longitudinal (L) and transverse (T) to the direction of
electric �eld. We also show the mean energy, which can-
not be directly measured in experiments but a map of the
mean energy versus E/N may be used directly to pro-
vide the data in �uid models especially when local �eld
approximation fails. As visible in Fig. 1 the mean energy
and the characteristic energies increase from about 20 Td.
In order to test the Monte Carlo code [13] for the

case of mixtures we calculated mean energy and char-
acteristic energy at lowest E/N . Obtained values for all
mixtures converged exactly to the thermal mean energy
(3/2)kT = 0.038778 eV and the thermal eD/K = kT i.e.
to 0.025852 eV (longitudinal (D = DL) and transverse
(D = DT) di�usion coe�cients) as expected.
Calculated rate coe�cients for processes are presented

in Fig. 2. Rate coe�cients are important for applica-
tions of the global model to Ar/BF3 mixtures. We are
presenting rate coe�cients for charge transfer (CT), elas-
tic scattering of F− in Ar, elastic scattering of F− in
BF3, and total loss of F− for (a) 80% Ar + 20%BF3 and
(b) 20% Ar + 80%BF3.
Transversal di�usion coe�cients for F− ions in Ar/BF3

mixtures as a function of E/N are shown in Fig. 3. Note
that the di�erence between the �ux and bulk values of dif-
fusion coe�cients, which have the same origin, have the
same initial value as drift velocities. There are no pub-
lished experimental data for the longitudinal and trans-
verse di�usion coe�cients of F− in Ar/BF3.

Fig. 3. The transversal di�usion coe�cients for
F− ions in Ar/BF3 mixtures as a function of E/N .

4. Conclusion

In this paper we show transport properties for the F−

in mixtures Ar/BF3 which do not exist in the literature.
The complete cross-section set has been determined by
extending Nanbu's theory.
The results are believed to be a good base for modeling,

which could be further improved when measured values of
transport coe�cients become available and then perform
the analysis again.
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