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This paper obtains solitons and other solutions to the perturbed Rosenau�KdV�RLW equation that is used

to model dispersive shallow water waves. This equation is taken with power law nonlinearity in this paper. There
are several integration tools that are adopted to solve this equation. These are Kudryashov method, sine-cosine
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obtained along with several constraint conditions that naturally emerge from the structure of these solutions.
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1. Introduction

There are several models describing the dynamics of
shallow water waves that appear along lake shores and
beaches [1�30]. These are Korteweg�de Vries (KdV)
equation [1, 21], the Boussinesq equation, the Kawahara
equation, the Peregrine equation or the Benjamin�Bona�
Mahoney equation that is also known as regularized long-
wave (RLW) equation and several others. However, there
is a growing interest in addressing models that describe
the dynamics of dispersive shallow water waves. A cou-
ple of these models are the Rosenau�Kawahara equa-
tion, the Rosenau�KdV (R�KdV) equation as well as the
Rosenau�KdV�RLW (R�KdV�RLW) equation. This pa-
per describes the dynamics of shallow water waves with
R�KdV�RLW equation. In order to keep it on a gener-
alized setting, this model is studied with power law non-
linearity so that results of all special cases are immediate
from the ones reported in this paper.
Integrability aspects, conservation laws and perturba-

tion theory are of general interest for such models. This
paper addresses the issue of integrability for R�KdV�
RLW equation with power law nonlinearity in presence
of perturbation terms. However, results for conservation
laws and soliton perturbation theory are all reported ear-
lier [16�19]. There are several algorithms for integration
that will be adopted in this paper. These are Kudryashov
method, sine-cosine function approach, G′/G-expansion

scheme, and �nally the exp-function method. Solitary
wave solutions and singular periodic solutions are ob-
tained in this paper. These are described in detail in
the next few sections. The results of these methods ap-
pear with necessary constraint conditions that are listed
corresponding to the solutions.

2. Governing equation

The perturbed R�KdV�RLW equation under study is
given by [17�19]:

ut+aux+b1uxxx+b2uxxt+cuxxxxt+k (un)x =R, (1)

where R represents the perturbation terms which are
given by

R = αu+ βuxx + γuxuxx + δumux + λuuxxx

+νuuxuxx + σu3x + ξuxuxxxx + ηuxxuxxx

+ρuxxxx + ψuxxxxx + κuuxxxxx. (2)

From (2), the shoaling e�ect is captured by α, while β in-
troduces dissipation. Higher-order nonlinear dispersion
is indicated by the coe�cient of δ. Fifth-order spatial
dispersion is given by the coe�cient of ψ, while higher-
order stabilization is introduced by ρ. The rest of the
terms are accounted for by the Whitham hierarchy.
The exact 1-soliton solution of Eq. (1) is given

by [17�19]:

u(x, t) = A sech
4

n−1 [B(x− vt)] , (3)

where the amplitude A is given by

A =

{ [
−(ac+ ψ)

(
n2 + 2n+ 5

)
+D1

]2
(n+ 3)(3n+ 1)

{8b2(cb1 + b2ψ)(n+ 1)2 + c [−(ac+ ψ) (n2 + 2n+ 5) +D1] (n2 + 2n+ 5)}16k(n+ 1)

} 1
n−1

(4)

and the inverse width B is

B =
n− 1

n+ 1

[
−(ac+ ψ)

(
n2 + 2n+ 5

)
+D1

32(cb1 + b2ψ)

] 1
2

(5)
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with

D1 =
[
(ac+ ψ)2

(
n2 + 2n+ 5

)2
+16(cb1 + b2ψ)(b1 − ab2)(n+ 1)2

] 1
2 . (6)

The speed of the dispersive solitary wave is

v =
a(n− 1)4 + 16b1B

2(n− 1)2 − 256ψB4

(n− 1)4 + 16b2B2(n− 1)2 + 256cB4
, (7)

or
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v =
b1(n− 1)2 − 4ψB2

(
n2 + 2n+ 5

)
b2(n− 1)2 + 4cB2 (n2 + 2n+ 5)

. (8)

The appropriate constraints are

(b1c+ b2ψ)
{
D1 −

(
n2 + 2n+ 5

)
(ac+ ψ)

}
> 0 (9)

and

(ac+ ψ)
2 (
n2 + 2n+ 5

)2
+16(n+ 1)2(b1c+ b2ψ)(b1 − ab2) > 0. (10)

for the solitary waves to exist.

3. Kudryashov method

The modi�cation of truncated expansion method,
which is a direct and e�ective algebraic method for com-
puting exact traveling wave solutions, was �rst proposed
by Kudryashov [4]. The modi�cation of truncated expan-
sion method that is known as the Kudryashov method is
one of the most e�ective methods for �nding the exact
solution of high order NLPDEs [4]. The most complete
description of this method was given in [5]. The success-
ful application of this method to NLPDEs was performed
in works [6�9].

3.1. Brief description of the method
Let us present the algorithm of modi�cation of trun-

cated expansion method (the Kudryashov method) for
�nding exact solutions of nonlinear PDEs. We consider
the nonlinear PDE in the following form:

P1 (u, ut, ux, uxx, . . .) = 0. (11)

Using traveling wave u(x, t) = U(z), z = x − vt car-
ries Eq. (11) into the following ordinary di�erential equa-
tion (ODE):

P2 (U,−vUz, Uz, Uzz, . . .) = 0. (12)

The Kudryashov method contains the following steps.
Step-1: We look for exact solution of Eq. (12) in the form

U =

N∑
l=0

cl (G(z))
l
, (13)

where cl(l = 0, 1, . . . , N) are constants to be determined
later, such that cN 6= 0, while G(z) has the form

G(z) =
1

1 +K exp (z)
(14)

a solution to the Riccati equation

G′(z) = G2(z)−G(z), (15)

where K is an arbitrary constant.
Step-2: We determine the positive integer N in
Eq. (13) by considering the homogeneous balance be-
tween the highest order derivatives and the nonlinear
terms in Eq. (12).
Step-3: We substitute Eq. (13) into Eq. (12), and cal-
culate all the necessary derivatives Uz, Uzz, . . . of the
unknown function U(z) as follows:

Uz =

N∑
l=1

cll(G− 1)Gl, (16)

Uzz =

N∑
l=1

cll
{

(1 + l)G2 − (2l + 1)G+ l
}
Gl, (17)

and so on. Substituting Eqs. (13), (16) and (17) into
Eq. (12), we obtain the polynomial

E2[G(z)] = 0. (18)

Step-4: Collecting all the terms of the same powers of the
function G(z) in the polynomial (18) and equating them
to zero, we obtain a system of algebraic equations which
can be solved by computer programs such as Maple and
Mathematica to get the unknown parameters cl and v.
Consequently, we obtain the exact solutions of Eq. (11).

3.2. Application to R�KdV�RLW equation

In this subsection, we will apply the Kudryashov
method to obtain the exact solution of the perturbed
R�KdV�RLW equation

ut + aux + b1uxxx + b2uxxt + cuxxxxt + k (un)x =

ψuxxxxx. (19)

First we introduce the wave variable z = B (x− vt) so
that u(x, t) = U(z) into Eq. (19) to carry out the model
(19) into an ODE given by

(a− v)Uz +B2(b1 − vb2)Uzzz −B4(cv + ψ)Uzzzzz

+k (Un)z = 0. (20)

Integrating Eq. (20) once with respect to z and taking
integration constant to zero yields

(a− v)U +B2(b1 − vb2)Uzz

−B4(cv + ψ)Uzzzz + kUn = 0. (21)

Balancing Uzzzz with U
n in Eq. (21) gives

N + 4 = nN ⇔ N =
4

n− 1
. (22)

To obtain an analytic solution, N should be an integer.
This requires the use of the transformation

U(z) = [V (z)]
2

n−1 . (23)

that transforms Eq. (21) to

+(a− v)(n− 1)4V 4+B2(b1 − vb2)
{

2(3− n)(n− 1)2

×V 2(Vz)
2 + 2(n− 1)3V 3Vzz

}
−B4(cv + ψ)

×{4(2− n)(3− n)(5− 3n) (Vz)
4

+ 24(3− n)

×(2− n)(n− 1)V (Vz)
2
Vzz + 6(3− n)(n− 1)2

×V 2 (Vzz)
2

+ 8(3− n)(n− 1)2V 2VzVzzz

+2(n− 1)3V 3Vzzzz}+ k(n− 1)4V 6 = 0. (24)

Balancing V 3Vzzzz with V
6 gives

3N +N + 4 = 6N ⇔ N = 2. (25)

So, the Kudryashov method suggests the use of the �nite
expansion

V = c0 + c1G+ c2G
2. (26)

Thus, we have derivatives of function V in the following
form:

Vz = 2c2G
3 + (c1 − 2c2)G2 − c1G, (27)

Vzz = 6c2G
4 + (−10c2 + 2c1)G3

+(−3c1 + 4c2)G2 + c1G, (28)

Vzzz=24c2G
5+(−54c2 + 6c1)G4+(−12c1 + 38c2)G3

+(−8c2 + 7c1)G2 − c1G, (29)

and
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Vzzzz = 120c2G
6 + (−336c2 + 24c1)G5

+(330c2 − 60c1)G4 + (−130c2 + 50c1)G3

+(−15c1 + 16c2)G2 + c1G. (30)

Substituting Eqs. (27)�(30) into Eq. (24), and equating
all the coe�cients of powers of G(z) to be zero, we obtain
a system of nonlinear algebraic equations and by solving
it, we have

v =
−16ψB4 + 4(n− 1)2b1B

2 + a(n− 1)4

16cB4 + 4(n− 1)2b2B2 + (n− 1)4
,

v =
b1(n− 1)2 − (n2 + 2n+ 5)ψB2

b2(n− 1)2 + (n2 + 2n+ 5)cB2
,

B =
n− 1

n+ 1

[
D2 − (n2 + 2n+ 5)(ac+ ψ)

8(cb1 + ψb2)

] 1
2

,

D2 =
[
(n2 + 2n+ 5)2(ac+ ψ)2

− 16(n+ 1)2(cb1 + ψb2)(ab2 − b1)
] 1

2 ,

c1 = −c2 = ±
[

8(n+ 1)(n+ 3)(3n+ 1)(cv + ψ)B4

k(n− 1)4

] 1
2

,

c0 = 0, (31)

where v and B could be compared to Eqs. (7), (8), and
(5), respectively. Substituting Eq. (31) into Eq. (21) and
inserting the result into the transformation (23), we get
the exact solution of Eq. (19) as follows:

u(x, t) =

{
c1K

eB(x−vt)(
1 +K eB(x−vt)

)2
} 2

n−1

. (32)

When K = ±1, we have the following 1-soliton solution:

u1(x, t) =

{
±c1

4
sech2

[
B

2
(x− vt)

]} 2
n−1

(33)

where(c1
4

) 2
n−1

=[
± (n+ 3)(3n+ 1)

[
D2 − (n2 + 2n+ 5)(ac+ ψ)

]2
/(

16(n+ 1)k
{

8b2(n+ 1)2(cb1 + ψb2) + c(n2 + 2n+ 5)

×
[
D2 − (n2 + 2n+ 5)(ac+ ψ)

] })] 1
n−1 , (34)

which could be compared to the expression of the ampli-
tude A given by Eq. (4).
Remark: The exact solution (32)�(33) is valid only if

(cb1 + ψb2)
{
D2 − (n2 + 2n+ 5)(ac+ ψ)

}
> 0,

and

(n2 + 2n+ 5)2(ac+ ψ)2 ≥
16(n+ 1)2(cb1 + ψb2)(ab2 − b1).

3.2.1. Case I (n = 3)

For n = 3 Eq. (21) reduces to

(a− v)U +B2(b1 − vb2)Uzz

−B4(cv + ψ)Uzzzz + kU3 = 0. (35)

Balancing Uzzzz with U
3 in Eq. (35) gives N = 2.

Therefore, the Kudryashov method introduces the �-
nite expansion

U = c0 + c1G+ c2G
2. (36)

Substituting Eq. (36) into Eq. (35), we obtain the sys-
tem of algebraic equations in the form

G6 : kc32 − 120c2(cv + ψ)B4 = 0, (37)

G5 : kc1c
2
2 − 2(4c1 − 61c2)(cv + ψ)B4 = 0, (38)

G4 : kc2(c0c2 + c21)− 10(11c2 − 2c1)(cv + ψ)B4

+2c2(b1 − b2v)B2 = 0, (39)

G3 : kc1(6c0c2 + c21)− 10(5c1 − 13c2)(cv + ψ)B4

+2(c1 − 5c2)(b1 − b2v)B2 = 0, (40)

G2 : 3kc0(c0c2 + c21)− (16c2 − 15c1)(cv + ψ)B4

+(4c2 − 3c1)(b1 − b2v)B2 + c2(a− v) = 0, (41)

G1 : 3kc20c1 − c1(cv + ψ)B4

+c1(b1 − b2v)B2 + c1(a− v) = 0, (42)

G0 : (a− v)c0 + kc30 = 0. (43)

Solving these under-determined algebraic equations, we
get the following results:

v =
a+ b1B

2 − ψB4

1 + b2B2 + cB4
=
a+ 7b1B

2 − 31ψB4

1 + 7b2B2 + 31cB4
,

B = {−5(ac+ ψ) + [25(ac+ ψ)2

−16(b1c+ b2ψ)(ab2 − b1)]
1
2 /8(b1c+ b2ψ)} 1

2 ,

c1 = −c2 = ∓
[

120(cv + ψ)B4

k

] 1
2

=

∓

{
2B2

[
65(cv + ψ)B2 − (b1 − b2v)

]
k

} 1
2

,

c0 = 0. (44)

Substituting Eq. (44) into Eq. (36), we get the exact so-
lution of Eq. (19) as follows:

u(x, t) = c1
K eB(x−vt)(

1 +K eB(x−vt)
)2 . (45)

When K = 1, we have the following solitary wave solu-
tion:

u3(x, t) =
c1
4
sech2

[
B

2
(x− vt)

]
. (46)

When K = −1, the following singular 1-soliton solution
is obtained:

u4(x, t) = −c1
4
csch2

[
B

2
(x− vt)

]
. (47)

Remark: The exact solutions (45)�(47) are valid only if{
[25(ac+ ψ)2 − 16(b1c+ b2ψ)(ab2 − b1)]

1
2

−5(ac+ ψ)
}

(b1c+ b2ψ) > 0,

where

25(ac+ ψ)2 ≥ 16(b1c+ b2ψ)(ab2 − b1)

and[
65(cv + ψ)B2 − (b1 − b2v)

]
k > 0.
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3.2.2. Case II (n = 5)
For n = 5, Eq. (21) reduces to

(a− v)U +B2(b1 − vb2)Uzz −B4(cv + ψ)Uzzzz

+kU5 = 0. (48)

Balancing Uzzzz with U
5 in Eq. (48) gives N = 1. Thus,

the Kudryashov method suggests the use of the �nite ex-
pansion

U = c0 + c1G. (49)

Substituting Eq. (49) into Eq. (48) and equating all the
coe�cients of powers of G(z) to be zero, we obtain

G5 : kc51 − 24c1(cv + ψ)B4 = 0, (50)

G4 : 5kc0c
4
1 + 60c1(cv + ψ)B4 = 0, (51)

G3 : 10kc20c
3
1 − 50c1(cv + ψ)B4

+2c1(b1 − vb2)B2 = 0, (52)

G2 : 10kc30c
2
1 + 15c1(cv + ψ)B4

−3c1(b1 − vb2)B2 = 0, (53)

G1 : (a− v)c1 + 5kc40c1 − c1(cv + ψ)B4

+c1(b1 − vb2)B2 = 0, (54)

G0 : (a− v)c0 + kc50 = 0. (55)

With the aid of Maple, we �nd the special solution of the
above system as

v =
4a− b1B2 + ψB4

4− b2B2 − cB4
,

B =
(
{10(ac+ ψ) + [100(ac+ ψ)2

−24(ab2 − b1)(b1c+ b2ψ)]
1
2 }
/

6(b1c+ b2ψ)
) 1

2

,

c1 = −2c0 = ±2

[
3(cv + ψ)B4

2k

] 1
4

= ±2

[
v − a
k

] 1
4

(56)

Substituting Eq. (56) into Eq. (49), we recover the exact
solutions of Eq. (19) as follows:

u5(x, t) = c0 tanh [B(x− vt)] , (57)

u6(x, t) = c0 coth [B(x− vt)] . (58)

These are shock wave solution and singular solitary wave
solution respectively.
Remark: The exact solutions (57)�(58) are valid only if

{[100(ac+ ψ)2 − 24(ab2 − b1)(b1c+ b2ψ)]
1
2

+10(ac+ ψ)}(b1c+ b2ψ) > 0

where

100(ac+ ψ)2 ≥ 24(ab2 − b1)(b1c+ b2ψ)

and

(v − a)k > 0, (cv + ψ)k > 0

Remark: Razborova et al. [2] showed that for the per-
turbed R�KdV�RLW equation, the topological solitons
would exist only for n = 3, 5 and no other value of n can
be permitted for the topological soliton solutions to be
valid.

4. Sine-cosine function method

This integration technique is another mathematical

mechanism to extract soliton and other solutions to any
NLPDE [10, 11].

4.1. Overview of the method

A PDE

P (u, ut, ux, uxx, uxt, utt, . . .) = 0, (59)

can be converted to an ODE

Q (U,U ′, U ′′, . . .) = 0, (60)

upon using a traveling wave variable u(x, t) = U(z), z =
x−vt. If possible, integrate Eq. (60) term by term one or
more times. This will reduce the order of Eq. (60). For
simplicity, the integration constants can be set to zero.
The solutions of the reduced ODE can be expressed in
the form

U(z) = λ cosβ(µz), |z| ≤ π

2µ
, (61)

or in the form

U(z) = λ sinβ(µz), |z| ≤ π

µ
, (62)

where λ, µ, and β are parameters that will be deter-
mined, µ and v are the wave number and the wave speed
respectively. These assumptions give

(Un)
′′

= −n2µ2β2λn cosnβ(µz)

+nµ2λnβ(nβ − 1) cosnβ−2(µz), (63)

and

(Un)
′′

= −n2µ2β2λn sinnβ(µz)

+nµ2λnβ(nβ − 1) sinnβ−2(µz). (64)

Using Eqs. (61)�(64) in the reduced ODE gives a trigono-
metric equation in cosK(z) or sinK(z) terms. The pa-
rameters are then determined by �rst balancing the ex-
ponents of each pair of cosines or sines to determine
K. We next collect all coe�cients of the same power in
cosK(z) or sinK(z), where these coe�cients have to van-
ish. This gives a system of algebraic equations among
the unknowns β, λ, v and µ that will be determined.
The solutions proposed in Eqs. (61) and (62) follow im-
mediately.

4.2. Application to R�KdV�RLW equation

We will use the sine-cosine function method to handle
the perturbed R�KdV�RLW equation. Using the wave
transformation

u(x, t) = U(z), z = x− vt, (65)

and integrating the resultant equation once with respect
to z and taking integration constant to zero, we have

(a− v)U + (b1 − vb2)Uzz − (cv + ψ)Uzzzz

+kUn = 0. (66)

Using the assumption

U(z) = λ cosβ(µz), (67)

in Eq. (66) we obtain

Uzz = −µ2β2λ cosβ(µz) + µ2λβ(β − 1) cosβ−2(µz),(68)

Uzzzz = µ4β4λ cosβ(µz)

−2µ4λβ(β − 1)(β2 − 2β + 2) cosβ−2(µz)
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+µ4λβ(β − 1)(β − 2)(β − 3) cosβ−4(µz). (69)

Substituting Eqs. (67)�(69) into Eq. (66), we have

λ
{

(a− v)− (b1 − vb2)µ2β2 − (cv + ψ)µ4β4
}

cosβ(µz)

+λ
{

(b1 − vb2)µ2β(β − 1)

+2(cv + ψ)µ4β(β − 1)(β2 − 2β + 2)
}

cosβ−2(µz)

−λ(cv + ψ)µ4β(β − 1)(β − 2)(β − 3) cosβ−4(µz)

+kλn cosnβ(µz) = 0. (70)

Using the balance method, by equating the exponents
and the coe�cients of cosK , we get

β(β − 1)(β − 2)(β − 3) 6= 0 (71)

nβ = β − 4, (72)

kλn − λ(cv + ψ)µ4β(β − 1)(β − 2)(β − 3) = 0, (73)

(a− v)− (b1 − vb2)µ2β2 − (cv + ψ)µ4β4 = 0, (74)

(b1 − vb2) + 2(cv + ψ)µ2(β2 − 2β + 2) = 0. (75)

Solving the system (Eqs. (71)�(75)) simultaneously, we
get the solutions set

λ =

[
8(cv + ψ)(n+ 1)(n+ 3)(3n+ 1)µ4

k(n− 1)4

] 1
n−1

,

v =
b1(n− 1)2 + 4ψ(n2 + 2n+ 5)µ2

b2(n− 1)2 − 4c(n2 + 2n+ 5)µ2
=

a(n− 1)4 − 16b1(n− 1)2µ2 − 256ψµ4

(n− 1)4 − 16b2(n− 1)2µ2 + 256cµ4
,

µ =
n− 1

n+ 1

[
D3 + (n2 + 2n+ 5)(ac+ ψ)

32(cb1 + ψb2)

] 1
2

,

D3 = [(n2 + 2n+ 5)2(ac+ ψ)2

−16(n+ 1)2(cb1 + ψb2)(ab2 − b1)]
1
2 ,

β = − 4

n− 1
. (76)

Consequently, we obtain the following singular periodic
solutions:

u7(x, t) = λ sec
4

n−1 [µ(x− vt)] , |x− vt| ≤ π

2µ
(77)

and

u8(x, t) = λ csc
4

n−1 [µ(x− vt)] , |x− vt| ≤ π

µ
. (78)

Remark: The exact solutions (77)�(78) are valid only if{
(n2 + 2n+ 5)(ac+ ψ) + [(n2 + 2n+ 5)2(ac+ ψ)2

−16(n+ 1)2(cb1 + ψb2)(ab2 − b1)]
1
2

}
(cb1 + ψb2) > 0

where

(n2 + 2n+ 5)2(ac+ ψ)2 ≥

16(n+ 1)2(cb1 + ψb2)(ab2 − b1)

5. G′/G-expansion method

Recently, a new method has been proposed by Wang
et al. [18], called the G′/G-expansion method to study
traveling wave solutions of nonlinear evolution equations.

This useful method is developed successfully by many
authors [19�22] and the reference therein. The G′/G-
expansion method [18] is based on the assumptions that
the traveling wave solutions can be expressed by a poly-
nomial in G′/G such that G = G(z) satis�es a second
order linear ordinary di�erential equation (ODE).

5.1. Review of the algorithm

We now summarize the G′/G-expansion method, es-
tablished in 2011 [19], the details of which can be found
in [18�22] among many others.
We assume that the given nonlinear partial di�erential

equation (NLPDE) for u(x, t) is in the form

P

(
u,
∂u

∂t
,
∂u

∂x
,
∂2u

∂x2
,
∂2u

∂t∂x
,
∂2u

∂t2
, . . .

)
= 0, (79)

where P is a polynomial. The essence of the G′/G-
expansion method can be presented in the following
steps:
Step-1: To �nd the traveling wave solutions of Eq. (79),
we introduce the wave variable

u(x, t) = U(z), z = x− vt. (80)

Substituting Eq. (80) into Eq. (79), we obtain the fol-
lowing ODE:

Q

(
U,

dU

dz
,
d2U

dz2
, . . .

)
= 0. (81)

Step-2: Eq. (81) is then integrated as long as all terms
contain derivatives where integration constants are con-
sidered zero.
Step-3: Introduce the solution U(z) of Eq. (81) in the
�nite series form

U(z) =

N∑
l=0

al

(
G′(z)

G(z)

)l
(82)

where al are real constants with aN 6= 0 and N is a pos-
itive integer to be determined. The function G(z) is the
solution of the auxiliary linear ordinary di�erential equa-
tion

G′′(z) + λG′(z) + µG(z) = 0, (83)

where λ and µ are real constants to be determined.
Step-4: Determining N, can be accomplished by bal-

ancing the linear term of highest order derivatives with
the highest order nonlinear term in Eq. (81).
Step-5: Substituting the general solution of (83) to-

gether with (82) into Eq. (81) yields an algebraic equa-
tion involving powers of G′/G. Equating the coe�cients
of each power of G′/G to zero gives a system of alge-
braic equations for al, λ, µ and v. Then, we solve the
system with the aid of a computer algebra system, such
as Maple, to determine these constants. Next, depending
on the sign of the discriminant ∆ = λ2 − 4µ, we obtain
solutions of Eq. (81). So, we can obtain exact solutions
of the given Eq. (79).

5.2. Application to R�KdV�RLW equation

In this subsection, we will apply the G′/G-expansion
method to handle the perturbed R�KdV�RLW equation.
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5.2.1. Case I (n = 3)

For n = 3, Eq. (66) reduces to

(a− v)U + (b1 − vb2)Uzz − (cv + ψ)Uzzzz

+kU3 = 0. (84)

Balancing Uzzzz with U
3 in Eq. (84) gives N = 2.

Therefore, the solution of Eq. (84) can be written in
the form

U(z) = a0 + a1

(
G′(z)

G(z)

)
+ a2

(
G′(z)

G(z)

)2

,

a2 6= 0, (85)

where G(z) satis�es the second-order linear ordinary dif-
ferential equation

G′′(z) + λG′(z) + µG(z) = 0, (86)

where λ and µ are real constants to be determined.

From Eqs. (85) and (86) we derive

Uzz = 6a2

(
G′

G

)4

+ (2a1 + 10a2λ)

(
G′

G

)3

+
(
4a2λ

2 + 8a2µ+ 3a1λ
)(G′

G

)2

+
(
6a2λµ+ 2a1µ+ a1λ

2
)(G′

G

)
+ a1λµ

+2a2µ
2, (87)

Uzzzz = 120a2

(
G′

G

)6

+ (24a1 + 366a2λ)

(
G′

G

)5

+(330a2λ
2 + 240a2µ+ 60a1λ)

(
G′

G

)4

+
(
440a2λµ+ 50a1λ

2 + 130a2λ
3 + 40a1µ

)(G′
G

)3

+
(
136a2µ

2 + 60a1λµ+ 16a2λ
4 + 232a2λ

2µ

+15a1λ
3
)(G′

G

)2

+
(
a1λ

4 + 22a1λ
2µ

+16a1µ
2 + 120a2µ

2λ+ 30a2λ
3µ
)(G′

G

)
+a1µλ

3 + 14a2λ
2µ2 + 8a1λµ

2 + 16a2µ
3. (88)

Substituting Eqs. (85)�(88) into Eq. (84), collecting all
terms with the same powers of G′/G and setting each
coe�cient to zero, we obtain a system of algebraic equa-
tions for a0, a1, a2, v, λ and µ as follows:(
G′

G

)6
coe�.:

−120(cv + ψ)a2 + ka32 = 0,(
G′

G

)5
coe�.:

−(cv + ψ)(24a1 + 336a2λ) + 3kca1a
2
2 = 0,(

G′

G

)4
coe�.:

3ka0a
2
2 + 6(b1 − vb2)a2 − (cv + ψ)(330a2λ

2 + 240a2µ

+60a1λ) + 3ka21a2 = 0,

(
G′

G

)3
coe�.:

6ka0a1a2 − (cv + ψ)(400a2λµ+ 50a1λ
2 + 130a2λ

3

+40a1µ) + (b1 − vb2)(2a1 + 10a2λ) + ka31 = 0,(
G′

G

)2
coe�.:

3ka20a2 + 3ka0a
2
1 − (cv + ψ)(136a2µ

2 + 60a1λµ

+16a2λ
4 + 232a2λ

2µ+ 15a1λ
3) + (a− v)a2

+(b1 − vb2)(4a2λ
2 + 8a2µ+ 3a1λ) = 0,(

G′

G

)1
coe�.:

(a− v)a1 − (cv + ψ)(a1λ
4 + 22a1λ

2µ+ 16a1µ
2

+120a2µ
2λ+ 30a2λ

3µ)

+(b1 − vb2)(6a2λµ+ 2a1µ+ a1λ
2) + 3ka20a1 = 0,(

G′

G

)0
coe�.:

(a− v)a0 + ka30 − (cv + ψ)(8a1λµ
2 + 16a2µ

3 + a1µλ
3

+14a2λ
2µ2) + (b1 − vb2)(a1λµ+ 2a2µ

2) = 0. (89)

With the aid of Maple, we shall �nd the special solution
of the above system

a = − 1

3000ka22c
2

(−960b1ca
2
2b2k + 115200b2b1cψ

+57600ψ2b22 − 960ψb22a
2
2k + 57600b21c

2

+3000a22ckψ + 4a42b
2
2k

2 − 25a42ck
2),

v =
ka22 − 120ψ

120c
,

µ =
a22k(5cλ2 + b2)− 120(b1c+ ψb2)

20ka22c
,

a0 =
a22k(5cλ2 + b2)− 120(b1c+ ψb2)

20ka2c
,

a1 = a2λ, (90)

where a2, λ are arbitrary constants.

Substituting the solution set (90) into Eq. (85), the so-
lution formula of Eq. (84) can be written as

U(z) = µ+ a2λ

(
G′(z)

G(z)

)
+ a2

(
G′(z)

G(z)

)2

, (91)

where

a = − 1

3000ka22c
2

(−960b1ca
2
2b2k + 115200b2b1cψ

+57600ψ2b22 − 960ψb22a
2
2k + 57600b21c

2

+3000a22ckψ + 4a42b
2
2k

2 − 25a42ck
2).

Substituting the general solutions of second order linear
ODE into Eq. (91) gives two types of traveling wave so-
lutions.

When∆ = λ2−4µ > 0, we have traveling wave solution(
G′

G

)
= −λ

2
+ Θ

C1sinh (Θz) + C2cosh (Θz)

C1cosh (Θz) + C2sinh (Θz)
,
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Θ =

√
λ2 − 4µ

2
, (92)

u21(x, t) = −Σ 2

{
1−
[
C1sinh (Σz) +C2cosh (Σz)

C1cosh (Σz) +C2sinh (Σz)

]2}
,

Σ =

√
120(b1c+ ψb2)− b2ka22

20kca2
, (93)

where C1 and C2 are arbitrary constants and z = x −{
ka22−120ψ

120c

}
t.

As a special case, assuming C1 6= 0 and C2 = 0 the
traveling wave solution of the perturbed R�KdV�RLW
equation can be written as

u22(x, t) = Σ 2sech2 (Σz) , (94)

Next, assuming C1 = 0 and C2 6= 0, then we obtain

u23(x, t) = Σ 2csch2 (Σz) . (95)

which are solitary waves and singular solitary waves, re-
spectively.

When ∆ = λ2 − 4µ < 0, the traveling wave solution is(
G′

G

)
= −λ

2
+ Θ

C1sin (Θz) + C2cos (Θz)

C1cos (Θz) + C2sin (Θz)
,

Θ =

√
λ2 − 4µ

2
, (96)

u24(x, t) = −Σ 2

(
1−

{
C1sin (Σz) + C2cos (Σz)

C1cos (Σz) + C2sin (Σz)

}2
)
,

Σ =

√
120(b1c+ ψb2)− b2ka22

20kca2
, (97)

where C1 and C2 are arbitrary constants and z = x −{
ka22−120ψ

120c

}
t.

Also, with the assumption C1 6= 0 and C2 = 0, the
special cases are

u25(x, t) = Σ 2sec2 (Σz) , (98)

and when C1 = 0, C2 6= 0 the solution of the perturbed
R-KdV-RLW equation will be

u26(x, t) = Σ 2csc2 (Σz) . (99)

and these are singular periodic solutions.
Remark: The exact solutions (93)�(99) are valid only if

a = − 1

3000ka22c
2

(−960b1ca
2
2b2k + 115200b2b1cψ

+57600ψ2b22 − 960ψb22a
2
2k + 57600b21c

2 + 3000a22ckψ

+4a42b
2
2k

2 − 25a42ck
2).

5.2.2. Case II (n = 5)

For n = 5, Eq. (66) reduces to

(a− v)U + (b1 − vb2)Uzz − (cv + ψ)Uzzzz

+kU5 = 0. (100)

Balancing Uzzzz with U
5 in Eq. (100) gives N = 1.

Therefore, the solution of Eq. (100) can be written in
the form

U(z) = a0 + a1

(
G′(z)

G(z)

)
, a1 6= 0, (101)

where G(z) satis�es the second-order linear ordinary dif-
ferential equation

G′′(z) + λG′(z) + µG(z) = 0, (102)

where λ and µ are real constants to be determined.

Substituting Eq. (101) into Eq. (100), collecting all
terms with the same powers of G′/G and setting each
coe�cient to zero, we obtain a system of algebraic equa-
tions for a0, a1, v, λ and µ as follows:(
G′

G

)5
coe�.:

−24(cv + ψ)a1 + ka51 = 0,(
G′

G

)4
coe�.:

−60(cv + ψ)a1λ+ 5ka0a
4
1 = 0,(

G′

G

)3
coe�.:

2(b1 − vb2)a1 + 10ka20a
3
1 − (cv + ψ)(50a1λ

2

+40a1µ) = 0,(
G′

G

)2
coe�.:

3(b1 − vb2)a1λ+ 10ka30a
2
1 − (cv + ψ)(60a1λµ

+15a1λ
3) = 0,(

G′

G

)1
coe�.:

(a− v)a1 + (b1 − vb2)(2a1µ+ a1λ
2) + 5ka40a1

−(cv + ψ)(a1λ
4 + 22a1λ

2µ+ 16a1µ
2) = 0,(

G′

G

)0
coe�.:

(a− v)a0 + (b1 − vb2)a1λµ+ ka50
−(cv + ψ)(a1µλ

3 + 8a1λµ
2) = 0. (103)

Solving these under-determined algebraic equations, we
obtain the following results:

a = − 1

1200ka41c
2

(1728b22ψ
2 − 144b22ψka

4
1

+3456b1cb2ψ + 1200cka41ψ + 1728b21c
2

−144b1cb2ka
4
1 − 50ck2a81 + 3b22k

2a51),

v =
ka41 − 24ψ

24c
,

µ =
24(b1c+ b2ψ) + ka41(5cλ2 − b2)

20cka41
,

a0 =
a1λ

2
, (104)

where a1, λ are arbitrary constants.

Substituting the solution set (104) into Eq. (101), the
solution formulae of Eq. (100) can be written as

U(z) = a

{
λ

2
+
G′(z)

G(z)

}
. (105)
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Substituting the general solutions of second order linear
ODE into Eq. (105) gives two types of traveling wave
solutions.

When ∆ = λ2 − 4µ > 0, traveling wave solutions are

u27(x, t) = Θ
C1sinh (Θz) + C2cosh (Θz)

C1cosh (Θz) + C2sinh (Θz)
,

Θ =

√
b2ka41 − 24(b1c+ b2ψ)

20cka21
, (106)

where C1 and C2 are arbitrary constants and z = x −{
ka41−24ψ

24c

}
t.

Next, assuming C1 6= 0 and C2 = 0 the traveling wave
solution of the perturbed R�KdV�RLW equation can be
written as

u28(x, t) = Σ tanh (Σz) ,

Σ =

√
b2ka41 − 24(b1c+ b2ψ)

20cka41
, (107)

Again, assuming C1 = 0 and C2 6= 0, then we obtain

u29(x, t) = Σ coth (Σz) ,

Σ =

√
b2ka41 − 24(b1c+ b2ψ)

20cka41
, (108)

which are shock waves and singular solitary waves, re-
spectively.

When ∆ = λ2 − 4µ < 0,

u30(x, t) = Θ
−C1sin (Θz) + C2cos (Θz)

C1cos (Θz) + C2sin (Θz)
,

Θ =

√
b2ka41 − 24(b1c+ b2ψ)

20cka41
, (109)

where C1 and C2 are arbitrary constants and z = x −{
ka41−24ψ

24c

}
t.

The special assumption C1 6= 0 and C2 = 0, leads to
the following singular periodic solutions:

u31(x, t) = −Σ tan (Σz) ,

Σ =

√
b2ka41 − 24(b1c+ b2ψ)

20cka41
, (110)

and when C1 = 0, C2 6= 0 the solution of the perturbed
R�KdV�RLW equation will be

u32(x, t) = Σ tan (Σz) ,

Σ =

√
b2ka41 − 24(b1c+ b2ψ)

20cka41
. (111)

Remark: The exact solutions (106)�(111) are valid
only if

a = − 1

1200ka41c
2

(1728b22ψ
2 − 144b22ψka

4
1

+3456b1cb2ψ + 1200cka41ψ + 1728b21c
2

−144b1cb2ka
4
1 − 50ck2a81 + 3b22k

2a51).

6. Exp-function method

Exp-function method which is proposed by He and Wu
in 2006 is a straightforward, concise and e�ective method
in obtaining generalized solitary solutions and periodic
solutions of nonlinear evolution equations. In compari-
son with other methods, exp-function method gives more
general solutions with some free parameters which, by
suitable choice of parameters, result in some known so-
lutions in open literature.

6.1. Overview of the method

First, we present brie�y the steps of the exp-function
method that will be applied.
Consider the general nonlinear partial di�erential

equation of the type

P

(
u,
∂u

∂t
,
∂u

∂x
,
∂2u

∂x2
,
∂2u

∂t∂x
,
∂2u

∂t2
, . . .

)
= 0. (112)

Using a transformation

u(x, t) = U(z), z = x− vt, (113)

Eq. (112) can be rewritten as the following nonlinear
ODE:

Q(U,U ′, U ′′, . . .) = 0. (114)

According to the exp-function method, we suppose that
the wave solution can be expressed in the following form:

U(ξ) =

∑d
n=−c an exp(nξ)∑q
m=−p km exp(mξ)

, (115)

where c, d, p and q are positive integers which are known
to be determined further, an and km are unknown con-
stants. We can rewrite Eq. (115) in the following equiv-
alent form:

u(ξ) =
ac exp(cξ) + . . .+ a−d exp(−dξ)
kp exp(pξ) + . . .+ k−q exp(−qξ)

. (116)

This equivalent formulation plays an important and fun-
damental part in �nding the analytic solution of prob-
lems. To determine the values of c and p, we balance the
linear term of highest order of Eq. (114) with the highest
order nonlinear term. Similarly, to determine the values
of d and q, we balance the linear term of lowest order of
Eq. (114) with the lowest order nonlinear term. Substi-
tuting solution (115) into Eq. (114) yields a set of alge-
braic equations for exp(ξ); then all coe�cients of exp(ξ)
have to vanish. After this separated algebraic equation,
we can �nd an and km.

6.2. Application to R�KdV�RLW equation

In this subsection, we apply the exp-function method
to derive the solution of perturbed R�KdV�RLW equa-
tion.

6.2.1. Case I (n = 3)
Just as before, for n = 3, Eq. (66) reduces to

(a− v)U + (b1 − vb2)Uzz − (cv + ψ)Uzzzz

+kU3 = 0. (117)

In order to determine values of c and p in (115), we bal-
ance the linear term of highest order in Eq. (117) with
the highest order nonlinear term. By simple calculation,
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we have

U3 =
c1 exp((3c+ 13p)z) + . . .

c2 exp(16pz) + . . .
, (118)

and

U (4) =
c3 exp((c+ 15p)z) + . . .

c4 exp(16pz) + . . .
, (119)

where ci are determined coe�cients only for simplicity.
Balancing highest order of exp-function in Eqs. (118) and
(119), we have

3c+ 13p = c+ 15p, (120)

which results in

p = c. (121)

Similarly to determine values of d and q, we balance the
linear term of lowest order in Eq. (117):

U3 =
d1 exp(−(3d+ 13q)z) + . . .

d2 exp(−16qz) + . . .
, (122)

and

U (4) =
d3 exp(−(d+ 15q)z) + . . .

d4 exp(−16qz) + . . .
, (123)

where di are determined coe�cients only for simplicity.
From Eqs. (122) and (123), we obtain

−(3d+ 13q) = −(d+ 15p), (124)

which gives

q = d. (125)

Choosing p = c = 1 and q = d = 1, Eq. (115) becomes

U(z) =
a−1 exp(−z) + a0 + a1 exp(z)

k−1 exp(−z) + k0 + k1 exp(z)
. (126)

Substituting Eq. (126) into Eq. (117), and equating to
zero the coe�cients of all powers of exp(nz) yield a set
of algebraic equations for a0, k0, a1, a−1, k−1, k1, a and v.
Solving the system of algebraic equations by the help of
Maple, we obtain

a0 = a0, k0 = k0, k1 = k1, (127)

v =
−ψ
c
, k−1 =

k20(b1c+ b2ψ) + 2kca20
4k1(b1c+ b2ψ)

,

a =
b2ψ + b1c− 2ψ

2c
, a1 =

√
−2kc(b1c+ b2ψ)k1

2kc
,

a−1 = −
√
−2kc(b1c+ b2ψ)

[
k20(b1c+ b2ψ) + 2ka20c

]
8kck1(b1c+ b2ψ)

,

a0 = 0, a1 = a1, k−1 = k−1, k0 = 0, (128)

v =
−ψ
c
, k1 =

√
−2kc(b1c+ b2ψ)a1

2(b1c+ b2ψ)
,

a =
2(b1c+ b2ψ)− ψ

c
, a−1 = − 2k−1(b1c+ b2ψ)√

−2kc(b1c+ b2ψ)
,

a−1 = a−1, k0 = k0, (129)

v =
−ψ
c
, a =

b1c+ b2ψ − 2ψ

2c
,

a0 = − 2k0(b1c+ b2ψ)

3
√
−2kc(b1c+ b2ψ)

, a1 =
5k20(b1c+ b2ψ)

27kca−1
,

k−1 =

√
−2kc(b1c+ b2ψ)a−1

b1c+ b2ψ
,

k1 =
5k20(b1c+ b2ψ)

36
√
−2kc(b1c+ b2ψ)a−1

.

This in turn gives the following solitary solutions of
Eq. (117):

U1(z) = [4k21(b1c+ b2ψ)(ηk1 ez + 2a0kc)− η e−z(b2k
2
0ψ

+2ka20c+ b1ck
2
0)]
/
{2kc[4k1(b1c+ b2ψ)(k1 ez + k0)

+(b2k
2
0ψ + 2ka20c+ b1k

2
0c)e−z]},

U2(z) = [2(b1c+ b2ψ)(a1η ez − 2k−1b1cez − 2k−1b2ψ e−z)]/
{η(ηa1 ez + 2(b1c+ b2ψ)k−1 e−z)},

U3(z) = {(b1c+ b2ψ)[k0(b1c+ b2ψ)(5k0η ez − 48a−1kc)

+72a2−1kcη e−z]}
/
{2kc[k0(b1c+ b2ψ)(5k0(b1c+ b2ψ)ez

+36a−1η) + 36a2−1η
2 e−z]}, (130)

where

η =
√
−2kc(b1c+ b2ψ). (131)

6.2.2. Case II (n = 5)

For n = 5, Eq. (66) is reduced to

(a− v)U + (b1 − vb2)Uzz − (cv + ψ)Uzzzz

+kU5 = 0. (132)

In order to determine values of c and p in (115), we
balance the linear term of highest order in Eq. (132) with
the highest order nonlinear term. By simple calculation,
we have

U5 =
c1 exp((5c+ 11p)z) + . . .

c2 exp(16pz) + . . .
, (133)

and

U (4) =
c3 exp((c+ 15p)z) + . . .

c4 exp(16pz) + . . .
, (134)

where ci are determined coe�cients only for simplicity.
Balancing highest order of exp-function in Eqs. (133)
and (134), we have

5c+ 11p = c+ 15p, (135)

which results in

p = c. (136)

In a similar way, to determine the values of d and q, we
balance the linear term of lowest order in Eq. (132):

U3 =
d1 exp(−(5d+ 11q)z) + . . .

d2 exp(−16qz) + . . .
, (137)

and

U (4) =
d3 exp(−(d+ 15q)z) + . . .

d4 exp(−16qz) + . . .
, (138)

where di are determined coe�cients only for simplicity.
From Eqs. (137) and (138), we obtain

−(5d+ 11q) = −(d+ 15q), (139)

which gives

q = d. (140)

Once again, by choosing p = c = 1 and q = d = 1,
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Eq. (115) becomes

U(z) =
a−1 exp(−z) + a0 + a1 exp(z)

k−1 exp(−z) + k0 + k1 exp(z)
. (141)

Substituting Eq. (141) into Eq. (132), and equating to
zero the coe�cients of all powers of exp(nz) yields a
set of algebraic equations for a0, k0, a1, a−1, k−1, k1, a, k
and v. Solving the system of algebraic equations by the
help of Maple, we have

a−1 = a−1, a0 = a0, k−1 = k−1, k0 = k0, (142)

v =
b1 + 5ψ

b2 − 5c
, a1 =

a20k
2
−1 − a2−1k20
4a−1k2−1

,

a = −3(b1c+ b2ψ)− 2b1 − 10ψ

2(b2 − 5c)
,

k1 = −
a20k

2
−1 − a2−1k20
4a2−1k−1

, k =
3k4−1(b1c+ b2ψ)

2(b2 − 5c)a4−1
,

which results in the following solution of (132):

U(z) =
a−1
k−1

(143)

×
[
(a20k

2
−1 + 4a2−1k

2
−1)e−z + 4a0a−1k

2
−1 − a2−1k20 ez

][
(a2−1k

2
0 − a20k2−1)ez + 4a2−1k−1(k0 + k−1 e−z)

] .

7. Conclusions

This paper studied the dynamics of shallow water
waves, modeled by R�KdV�RLW equation comprehen-
sively. There are several solutions that are retrieved
from this model, when perturbation terms are taken into
account. These are solitary waves, shock waves, sin-
gular periodic functions and several more. These solu-
tions come with their respective constraint conditions
that must hold for these solutions to exist. Few inte-
gration schemes are applied to this paper. The results
are overwhelming.
The results of this paper are indeed immensely encour-

aging to pursue further studies with the model. Later the
model will be studied using several numerical schemes.
Additionally, stochastic perturbation terms will be taken
into account that will lead to the corresponding Langevin
equation that will lead to the mean free velocity of the
soliton. The results of those research activities are forth-
coming.
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