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1. Introduction

In this paper we present a graphics processing unit
(GPU) implementation of list-mode reconstruction algo-
rithm of a 2D strip PET. This detector consists of two
parallel bars (strips) of scintillator with a photomultiplier
attached to each end [1, 2].

Fig. 1. 2D-strip detector geometry.

By measuring the time of the arrivals of photons to
each of the photomultipliers we can reconstruct the po-
sition at which γ quanta have interacted with the scin-
tillators as well as the position along the line-of-response
(LOR) (see Fig. 1). Application of the state of the art
electronics developed at the Jagiellonian University al-
lowed to achieve the required resolution [3, 4].

*corresponding author; e-mail: piotr.bialas@uj.edu.pl

A double-strip prototype can be regarded as an elemen-
tary part of the full 3D �J-PET� [5] detector under con-
struction at our faculty [1, 2, 6�8]. The detector will con-
sist of cylindrically arranged scintillator strips (as shown
schematically in Fig. 2) enabling a full 3D reconstruction.
However, the two strip prototype is also of interest as a
cheap scanning device.

Fig. 2. An example of the possible 3D detector geom-
etry of the J-PET detector.

2. Setup

The description of the readout system electronics is
beyond the scope of this paper, we will just assume that
for each event we are given three numbers (z̃u, z̃d,∆l̃)
(see Fig. 1). By convention we use the tilde to denote
measured quantities as opposite to �real� or exact val-
ues. The z̃u and z̃d denote respectively the reconstructed
position along the upper and lower strip and ∆l̃ is the
di�erence of the distances along the LOR from the emis-
sion point to the upper and lower strips

(1500)
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∆l̃ =
√

(R− ẽy)2 + (z̃u − ẽz)2

−
√

(R+ ẽy)2 + (z̃d − ẽz)2. (1)

From those measurements the emission position and an-
gle can be reconstructed directly

tan θ̃ =
z̃u − z̃d

2R̄
,

ỹ = −1

2

∆l̃√
1 + tan2 θ̃

=
2R̄∆l̃√

z̃u − z̃d + 4R̄2
,

z̃ =
1

2

(
z̃u + z̃d + 2y tan θ̃

)
=

1

2

(
z̃u + z̃d +

(z̃u − z̃d)∆l̃√
z̃u − z̃d + 4R̄2

)
. (2)

It is however subject to measurement errors (see the
correlation matrix description at the end of Sect. 3).
In Fig. 3b we present results of such direct reconstruction
of the phantom depicted in Fig. 3a. It is clear that the
resolution of the detector is not su�cient for direct re-
construction and statistical reconstruction methods need
to be applied.

The statistical reconstruction is done iteratively using
the List-Mode version of the maximal likelihood expec-
tation maximization (MLEM) algorithm. Each iteration
of this algorithm is de�ned by the following formula [9]:

ρ(l)(t+1) =

N∑
j=1

P (ẽj |l)ρ(l)(t)

M∑
i=1

P (ẽj |i)s(i)ρ(i)(t)

. (3)

The ρ(l) is the sought tracer emission density given as
the average number of emissions from pixel l during the
examination. The P (ẽ|i) is a reconstruction kernel that
represents the probability that an event originating in
pixel i will be detected as ẽ. The s(i) is the sensitivity
of the pixel i, i.e. the probability that an event emitted
from pixel i will be detected at all. This sensitivity can
be easily calculated from the geometry

s(y, z) = π−1

(
arctan min

( 1
2L− z
R− y

,
1
2L+ z

R+ y

)

− arctan max

(
−

1
2L+ z

R− y
,
− 1

2L+ z

R+ y

))
. (4)

In derivation we have assumed that the detection proba-
bility along the strip is constant and that it does not de-
pend on the angle of incidence. These conditions should
be approximately ful�lled for incidence angles not ex-
ceeding 30◦.

The formula (3) can be rewritten as

ρ′(l)(t+1) =

N∑
j=1

P (ẽj |l)ρ′(l)(t)

M∑
i=1

P (ẽj |i)ρ′(i)(t)

. (5)

with

Fig. 3. Phantom used in reconstruction (R = 130mm,
L = 300mm and 4× 4mm2 pixel size).

ρ′(i) ≡ s(i)ρ(i). (6)
In the following we will give the results of the reconstruc-
tion of ρ′(i).
The sum over j in Eq. (5) runs over all collected

events {ẽj}. Considering that up to hundred millions of
events can be collected during a single scan this is a very
time consuming calculation so the e�cient calculation of
the kernel P is essential.

3. Kernel and correlation matrix

In Refs. [10, 11] we have found analytical approxima-
tion of P (ẽ|i) given by

P (ẽ|i) ≈ det
1
2 C

2π
√
aC−1a + 2oC−1b
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× exp

(
−1

2

(
bC−1b−

(
bC−1a

)2
aC−1a + 2oC−1b

))
. (7)

The o, a, b are de�ned as follows:

o =

 −(∆y + ỹ −R) tan θ̃ cos−2 θ̃

−(∆y + ỹ +R) tan θ̃ cos−2 θ̃

−(∆y + ỹ) cos−1 θ̃(1 + 2 tan2 θ̃)

 , (8)

a =

−(∆y + ỹ −R) cos−2 θ̃

−(∆y + ỹ +R) cos−2 θ̃

−(∆y + ỹ) cos−1 θ̃ tan θ̃

 , (9)

b =

∆z −∆y tan θ̃

∆z −∆y tan θ̃

−2∆y cos−1 θ̃

 , (10)

and

∆y = y − ỹ and ∆z = z − z̃. (11)
The ỹ and z̃ are the coordinates of the reconstructed
emission point and θ̃ is the reconstructed emission angle
of the event ẽ. The y and z are the coordinates of the
center of pixel i. C is the correlation matrix which in
general can be of the form

C−1 =


1
σ2
z

0 γ

0 1
σ2
z
−γ

γ −γ 1
σ2

∆l

 . (12)

This matrix depends on the z̃u and z̃d, for σz. Experi-
mentally we have found this dependence to be quite weak
on the order of 10% from the center (lowest) to the edge
(highest). We have found out that coe�cient γ can be
neglected as long as we do not take into account events
with zu(d) near the edge of the scintillators. This may
change when we consider the full detector with longer
(500 mm) scintillator strips, but in this contribution we
assume correlation matrix to be diagonal. Currently we
achieve σz ≈ 10 mm and σ∆l ≈ 40 mm. Please note
that the last number corresponds to 20 mm error for the
position along the emission line as the distance from the
line midpoint is equal to 1

2∆l.
Formula (7) is, at least for the range of parameters we

have studied, strongly dominated by the Gaussian term
bC−1b. This term de�nes an 3σ ellipse (see Fig. 1). For
practical purposes we can assume that the kernel is zero
outside this ellipse. As it is easier to work with rectan-
gular shapes we also de�ne a bounding box consisting of
an rectangle that is circumscribed on the ellipse (see Ap-
pendix B).

4. Implementation

The iteration step described by formula (3) can be
implemented as described by the pseudocode in listing of
implementation of the reconstruction iteration routine:

1 for (auto p_l : pixels) {

2 rho_new[p_l] = 0.0;

3 }

4 for (auto e_j : events) {

5 auto denominator = 0.0;

6 for (auto i : ellipse(e_j)) {

7 kernel[i] = p(e_j, i);

8 denominator += kernel[i] * rho[i];

9 }

10 for (auto i : ellipse(e_j)) {

11 rho_new[i] += rho[l] * kernel[i] / denominator;

12 }
13 }

Loops for (auto e_j : events) on lines 6 and 10
iterate over all pixels in the 3σ ellipse of the event ẽ.
To calculate pixels contributing to this ellipse we �rst
need to determine its bounding box in pixel space. Once
bounding box is calculated we loop only through pixels
inside this bounding box. Each pixel is then tested if
its center point resides inside or outside of the ellipse.
Only then the whole kernel is calculated. The results are
cached and used subsequently in the second loop.

4.1. CPU

The central processing unit (CPU) implementation
follows essentially the algorithm from listing. We use
OpenMP to parallelize the outer loop (line 5) over the
events. Each thread writes to its own copy of rho_new
array which are added at the end of the iteration. Cur-
rently we do not take direct advantage of the AVX/SSE
instruction set aside of automatic vectorization provided
by Intel C++ Compiler.

4.2. GPU implementation

Next step was a naive GPU implementation based on
our reference CPU implementation where each thread
processes all pixels of single event, so few thousands of
events are processed simultaneously by hardware threads.
Such approach has however serious drawback on GPU

hardware, which is essentially a vector computer. On
the NVIDIA CUDA architecture that we use, the threads
are collected in batches of 32 threads called warps. All
threads in a warp must execute the same instruction in
parallel (SIMD). In the naive implementation each thread
is processing di�erent events with di�erent number of
pixels. That amounts to a double loop with loops bounds
di�erent across the threads of a warp. This leads to se-
vere thread divergence and as we have discovered carries
a much higher penalty than naively expected. One would
expect that the execution time of a warp would be ap-
proximately the time needed to execute the longest loops,
but as it turned out it is much higher. Additionally, we
cannot cache visited pixels and their kernel results since
it is not enough registers or shared memory to store such
information given each thread processes separate event.
We can circumvent that using di�erent pixel calcula-

tion scheduling where whole warp of 32 threads calculates
a single event. This is called by us warp granularity (see
Fig. 4). As each thread in a warp processes a single pixel
from the same event there is no divergence. Di�erent



GPU Accelerated Image Reconstruction in a Two-Strip J-PET Tomograph 1503

events are processed by di�erent warps which can run in-
dependently. This algorithm also lets us better leverage
available shared memory and registers. However, proces-
sor cycles are still wasted by the threads that fail the
bounding ellipse test.
First it has to be noted that single event is calculated

in two passes. First we need to calculate denominator
of (3). This pass needs bounding box to be calculated
�rst, then each pixel in this pass is tested with 3-sigma
ellipse equation.

Fig. 4. Warp granularity (whole event processed by
single warp).

During �rst pass warp granularity gives us opportunity
to cache visited pixels and kernel (7) in shared memory
and registers, so the second pass can loop only through
visited already pixels without a need to test them for
ellipse inclusion. Also we can cache kernel results in reg-
isters, since each thread in warp is likely to visit just few
pixels of single event.
Calculation of the denominator requires adding the

contributions from the 32 threads of the warp. We have
done this using the new shu�e instructions introduced
in the Kepler architecture. This gave a notable per-
formance boost over standard reduction algorithm using
shared memory [12].
Final optimization is to access ρ (previous iteration im-

age bu�er) as texture. This produces noticeable perfor-
mance boost by using hardware GPU texture unit cache
and special 2D access optimized memory layout. How-
ever it can be observed that memory access still takes
around 35% of overall iteration time after optimizations.

5. Benchmarks and results

We have benchmarked our GPU implementation on
NVIDIA GeForce GTX 770 commodity card with 4 GB
memory and compute capability 3.0 using CUDA SDK
6.5, CPU implementation on Intel Xeon CPU E5-1650 v2
@ 3.50 GHz with 6 cores using ICC 15.0.0 (Intel Com-
poser XE 2015). The benchmark results for 107 events
are as follows: CPU OpenMP � 11.87 s, GPU Thread

� 0.69 s, GPU Warp � 0.47 s, speedup CPU/Warp �
25. The results of reconstruction of the phantom after
di�erent number of iterations are presented in Fig. 3c�f.

6. Summary and outlook

We have implemented and tested our reconstruction
kernel on simulated data using realistic parameters ob-
tained from experimental measurements. As seen from
Fig. 3c�f the results are very encouraging, considering
the simplicity and the resolution of our setup. Imple-
menting the reconstruction algorithm on the commodity
GPU provided a 25-fold speedup that allows real-time
processing. One should note however that this speed is
partly due to not taking advantage of the CPU vector
AVX instruction set. The reason for this is that as we
have already pointed out in [13] the CUDA and OpenCL
programming model is inherently vectorized while CPU
is still viewed as superscalar processor with vector in-
structions mixed in. This is only now slowly changing
with introduction of new compiler pragmas to deal ex-
plicitly with vectorization in a similar way as OpenMP
deals with parallelization.
In derivation of Eq. (7) we have assumed a very sim-

ple detector geometry with scintillators approximated by
thin lines. In reality they have a rectangular cross-section
of 5×20 mm2. To some extent this was taken into account
by using the errors estimated from real scintillators. The
model however must be validated on real data (which
is already collected) and this is a subject of an ongoing
investigation.

Appendix A, Phantom

Phantom de�nition is given in Table. Each row corre-
sponds to an ellipse with center (x, y) and the half-axes
a and b rotated by angle φ counterclockwise. The ρ de-
notes the relative density of the tracer. When two ellipses
overlap the ρ is taken from the topmost one in Table.

TABLE

Phantom description, all dimensions are in
milimeters, and angles in degrees.

x y a b φ ρ

0 0 30 60 0 0.3

50 -62 10 33 -40 0.3

-50 -63 20 33 45 0.5

60 65 13 14 0 0.5

35 55 12 12 0 0.7

0 0 120 110 0 0.1

Appendix B, Bounding box

Given an ellipse de�ned by the equation

Ay2 + Cyz +Bz2 = R2 (13)
its bounding box is a rectangle with lower left corner at

y = − R√
A− C2

B

, z = − R√
B − C2

A

(14)

and symmetric upper right corner. This combined with
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bC−1b = 2
(∆z −∆y tan θ̃)2

σ2
z

+ 4
∆y2

σ2
∆lcos

2θ̃
=

∆z2 2

σ2
z

− 2∆z∆y
2 tan θ̃

σ2
z

+∆y2

(
2 tan2 θ̃

σ2
z

+
4

σ2
∆l cos2 θ̃

)
(15)

allows us to calculate the bounding box of the 3σ ellipse
for each event.
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