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The derivation of the virial theorem is presented both in classical and quantum mechanical approach. The
kinetic energy and potential energy of the mechanical energy is converted to each other due to the virial theorem.
Some of the di�erent potentials are considered. For some of these potentials, the wavefunctions and energy
eigenvalues of the Schrödinger Equation are derived.
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1. Introduction

The design of the paper is as follows. In section 2,
we wrote the virial theorem both for the classical and
quantum mechanical cases by using the works done previ-
ously. In section 3, the wavefunctions of the Schrödinger
Equation are written for di�erent potentials due to the
virial theorem. In section 4, the energy eigenvalues of the
Schrödinger Equation are calculated in the same sense.
The conclusion of this work is given in section 5.

2. The derivation of the virial theorem

2.1. Classical case

In the references [1�5], the virial theorem is derived as
follows:

G =
∑
i

pi · ri, (1)

here G is considered to be a quantity, pi the momentum,
and ri the position of the particle in a stable system.
Taking the derivative of Eq. 1, we get the equation:

dG

dt
=
∑
i

(
dpi
dt
· ri + pi ·

dri
dt

)
. (2)

The second term in the right hand of the Eq. 2 can be
written as [5]:∑

i

pi ·
dri
dt

=
∑
i

(mṙi) · ṙi = mṙ2i = 2T and

∑
ṗi · ri =

∑
i

F i · ri. (3)

Here T is the kinetic energy. If the quantity G is bounded
in a time interval of τ , one can write:

1

τ

τ∫
0

dG

dt
dt =

1

τ
(G(τ)−G(0)) = 0. (4)

From Eq. 2, it is obvious that
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1

τ

τ∫
0

dG

dt
dt = 2T +

∑
F i · ri, (5)

if the momentum is periodic. From Eq. 4 and 5 we get
the equation

2T = −
∑
i

F i · ri. (6)

Equation 6 is the virial theorem derived in the classical
case.

2.2. Quantum mechanical case

The time dependent Schrödinger Equation is

i}
dψ

dt
= Hψ. (7)

The derivative of expectation value of an operator A with
respect to time is

i}
d

dt
〈ψ|A|ψ〉 = 〈ψ|[H,A]|ψ〉. (8)

We let A = r · p. Inserting this in Eq. 8, choosing
A to be time-independent, and using time-dependent
Schrödinger equation we obtain the following equation
after some calculations

〈ψ|[H,A]|ψ〉 = 0. (9)

Then the commutation is

[H,A] =

[
p2

2m
+ V (r), r · p

]
= i}r · ∇V − i}

m
p2 =

i}r · ∇V − 2i}T = 0. (10)

From the last equation, it is obvious that

2〈T 〉 = 〈r · ∇V 〉. (11)

Equation 10 is the virial theorem derived in the quantum
mechanical case.
The quantum mechanical virial theorem, including rel-

ativistic form, is widely used in the works for di�erent
purposes; for more information see [6�24] and the refer-
ences therein.

(914)

http://dx.doi.org/10.12693/APhysPolA.127.914
mailto:hasanarslan46@yahoo.com


The Wavefunctions and Energy Eigenvalues of the Schrodinger Equation for. . . 915

3. The wavefunctions of the Schrödinger

equation for a potential given by V (r) = krn

The total mechanical energy of a system is the sum of
the kinetic energy T and the potential energy V written
as

E = T + V. (12)

For a potential

V (r) = krn, (13)

where k is a constant and n 6= 0 and an integer, Eq. 11
can be written as

2T = nV. (14)

If we take n = 1 in Eq. 14, we get the total energy of the
stable system in terms of potential energy as

E =
3V

2
. (15)

The spatial and time-dependent Schrödinger Equations
are[

p2

2m
+ V (r)

]
ψ = Eψ, and i}

dψ

dt
= Eψ, (16)

respectively. By using Eq. 15 in Eq. 16, we can write

dψ

dt
= − 3i

2}
V ψ. (17)

We are now ready to obtain the wavefunction for the
potential V (r) = krn with di�erent n values. For the
simplest case, we let the number n = 1. By putting
V = kr in Eq. 17 we obtain the wavefunction as

ψ = ψ0 e
−i 3k2}

∫
rdt. (18)

De�ning the constant k as k′ → 3k
2} , the wavefunction is

ψ = ψ0 e
−ik′

∫
rdt. (19)

For di�erent values of the integer n, we can obtain dif-
ferent wavefunctions by inserting the de�ned potentials
and integrating Eq. 17. It means that the type of the
wavefunction depends on the type of the potential.

4. The energy eigenvalues of the Schrödinger

equation for di�erent potentials

We can write the Eq. 11 for n = −1 as

2T = −V, (20)

the same as derived in the classical case given by the
Eq. 6. Then, the mechanical energy of the system due to
the virial theorem is

E = T + V = − p2

2m
, (21)

where

p→ −i}∇. (22)

By using Eq. 21 and 22, the Schrödinger Equation be-
comes

}2

2m

d2ψ

dr2
= Eψ. (23)

If we take ψ = ekr, the energy eigenvalues of the Eq. 23
are

En =
}2k2n
2m

. (24)

Here, it must be noted that the application of the virial
theorem to the Schrödinger Equation gives the same
eigenvalues as in the quantum mechanics.
Now we rewrite Eq. 11 as

〈T 〉 =
〈
1

2
r
dV

dr

〉
. (25)

Then, the mechanical energy can be written as

E =

〈
1

2
r
dV

dr

〉
+ V. (26)

By using Eq. 26, for a spatial wavefunction u(r), the
Schrödinger Equation takes the form[

1

2
r
dV

dr
+ V

]
u(r) = Eu(r). (27)

Choosing the potential as V (r) = krn and solving the
Eq. 27 for this potential we get the energy eigenvalues

En =

(
n+ 2

2

)
krn. (28)

If n = 1, the energy is just in the form of the work done by
a force taking the particle to a distance r. If n = −1, the
energy is in the form of the central or attractive potential.
Also, the energy eigenvalues are in terms of the potential.
The application of the virial theorem to the

Schrödinger Equation is done in the reference [7] in a
di�erent way.
We are now looking the energy eigenvalues of the

Eq. 27 for a Yukawa potential

V (r) = −Q
r
e−kr. (29)

By using this potential we get the solution of the Eq. 27
for the energy eigenvalues as

E =

(
2kr − 1

2

)
Q

r
e−kr. (30)

Again, the energy eigenvalues are in terms of the poten-
tial.

5. Conclusions

The virial theorem is derived in both of the classical
and quantum mechanical approaches. Both derivations
imply the same validity of the theorem. The theorem is
applied to the Schrödinger Equation to obtain the wave-
functions and energy eigenvalues of the equation. As a
result of the applications, it is concluded that the wave-
functions are di�erent for each of the chosen potentials
and energy eigenvalues are in terms of the potentials.

References

[1] D. Kui¢, Int. J. Theor. Phys. 52, 1221 (2013).

[2] J.D. Stokes, H.P. Dahal, A.V. Balatsky, K.S. Bedell,
Phil. Mag. Lett. 93, 672 (2013).

[3] H. Goldstein, Classical Mechanics, Addison-
Wesley Publishing Company , Inc., Reading (1959).

http://dx.doi.org/10.1007/s10773-012-1438-6
http://dx.doi.org/10.1080/09500839.2013.838006


916 H. Arslan, N. Hulaguhanoglu

[4] S.T. Thornton, J.B. Marion, Classical Dynamics of
Particles and Systems , Thomson Learning, Belmont
(2004).

[5] H. Arslan, Appl. Math. 4, 688 (2013).

[6] B.Y. Al-Khasawneh, MSc. Thesis, Yarmouk Univer-
sity, Irbid , 6 (2010).

[7] T. Nadareishvili, A. Khelashvili, arXiv preprint
arXiv:0907.1824 (2009).

[8] R. Gurtler, D. Hestenes, J. Math. Phys. 16, 573
(2008).

[9] W. Namgung, J. Korean Phys. Soc. 32, 647 (1998).

[10] J.N. Bahcall, Phys. Rev. 124, 923 (1961).

[11] Z. Ru-Zeng,W. Yu-Hua, Q. Jin Chinese Phys. 11,
1193 (2002).

[12] E. Weislinger, G. Olivier, Int. J. Quantum Chem. 8,
389 (1974).

[13] E. Weislinger, G. Olivier, Int. J. Quantum Chem. 9,
425 (1975).

[14] G. Kalman, V. Canuto, B. Datta, Phys. Rev. D 13,
3493 (1976).

[15] F. Rosicky, F. Mark, J. Phys. B: At. Mol. Phys. 8,
2581 (1975).

[16] A. Barshalom, J. Oreg, High Energy Density Physics
5, 196 (2009).

[17] H. Arslan, J. Mod. Phys. 4, 559 (2013).

[18] H. Arslan, Open Journal of Microphysics 1, 28
(2011).

[19] W. Lucha, Mod. Phys. Lett. A 5, 2473 (1990).

[20] V.M. Shabaev, arXiv preprint arXiv:physics/0211087
(2002).

[21] C. Semay, J. Math. Phys. 34, 1791 (1993).

[22] N.H. March, Phys. Rev. 92, 481 (1953).

[23] M.E. Rose, T.A. Welton, Phys. Rev. 86, 432 (1952).

[24] A.A. Balinsky, W.D. Evans, Lett. Math. Phys. 44,
233 (1998).

http://dx.doi.org/10.4236/am.2013.44094
http://arXiv.org/abs/0907.1824
http://dx.doi.org/10.1063/1.522555
http://dx.doi.org/10.1063/1.522555
http://dx.doi.org/10.1103/PhysRev.124.923
http://dx.doi.org/10.1088/1009-1963/11/11/318
http://dx.doi.org/10.1088/1009-1963/11/11/318
http://dx.doi.org/10.1002/qua.560080842
http://dx.doi.org/10.1002/qua.560080842
http://dx.doi.org/10.1002/qua.560090852
http://dx.doi.org/10.1002/qua.560090852
http://dx.doi.org/10.1103/PhysRevD.13.3493
http://dx.doi.org/10.1103/PhysRevD.13.3493
http://dx.doi.org/10.1088/0022-3700/8/16/014
http://dx.doi.org/10.1088/0022-3700/8/16/014
http://dx.doi.org/10.1016/j.hedp.2009.05.008
http://dx.doi.org/10.1016/j.hedp.2009.05.008
http://dx.doi.org/10.4236/jmp.2013.44078
http://dx.doi.org/10.4236/ojm.2011.12005
http://dx.doi.org/10.4236/ojm.2011.12005
http://dx.doi.org/10.1142/S0217732390002870
http://arXiv.org/abs/physics/0211087
http://dx.doi.org/10.1063/1.530417
http://dx.doi.org/10.1103/PhysRev.92.481
http://dx.doi.org/10.1103/PhysRev.86.432.2
http://dx.doi.org/10.1023/A:1007425400991
http://dx.doi.org/10.1023/A:1007425400991

