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The econophysics approach to socio-economic systems is based on the assumption of their complexity. Such
assumption inevitably leads to another assumption, namely that underlying interconnections within socio-economic
systems, particularly �nancial markets, are nonlinear, which is shown to be true even in mainstream economic
literature. Thus it is surprising to see that network analysis of �nancial markets is based on linear correlation
and its derivatives. An analysis based on partial correlation is of particular interest as it leads to the vicinity of
causality detection in time series analysis. In this paper we generalise the planar maximally �ltered graphs and
partial correlation planar graphs to incorporate nonlinearity using partial mutual information.
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1. Introduction

The �eld of econophysics is perhaps best known for
its treatment of �nancial markets as complex systems.
In this treatment network theory plays an important role.
Most commonly a correlation-based network structure is
created, which quanti�es the interrelations between �-
nancial instruments on a given market. Such analysis
uncovers basic structure of the studied market but can
also be useful for practical applications such as portfolio
optimisation [1]. There have been numerous studies look-
ing into stock markets in daily [2�7] and intraday [8�10]
scales, as well as market indices [11�18] and foreign ex-
change markets [19]. The well-corroborated results show
that markets are structured according to sectors and sub-
sectors of economic activities for stock markets and ge-
ographical locations for market indices and foreign ex-
change markets. Thus one can technically predict which
sector does a �nancial instrument belong to, which is
practically useless however. We see that there are limi-
tations to this approach. One limitation is related to the
above-mentioned limited usefulness. Much more inter-
esting would be an analysis of causal relationships within
the markets. This is done recently using either lead-lag
e�ect (asymmetric correlations) or partial correlations.
The second limitation is connected with the researchers'
insistence on using strictly linear measure of closeness
between studied elements of the market, even though it
goes against the assumption of complexity of those sys-
tems [20, 21] and the solid evidence of nonlinearity on
�nancial markets with regards to stock returns [22�26],
market index returns [27�31], and currency exchange rate
changes [32�35]. Recently we have been studying the �-
nancial networks using information-theoretic approach to
account for nonlinearity [36, 37].

In this paper we are trying to address those issues
together by using network analysis of �nancial markets
based on partial mutual information. Partial mutual in-
formation is a generalisation of partial correlations, which
is sensitive to nonlinear dependencies, to which Pearson's
correlation and partial correlation are strictly not sensi-
tive. Using partial mutual information allows us to either

re�ne the classical structural analysis of the market by
adding nonlinearity and controlling for mediating in�u-
ence of third instruments. But partial mutual informa-
tion may also be used to bring the analysis closer to mar-
ket dynamics and causal relationships, similarly to the
analysis performed with partial correlation in [38, 39].
This paper is structured as follows: in Sect. 2 we

present the proposed methodology. In Sect. 3 we show
the results obtained for NYSE and brie�y discuss them.
In Sect. 4 we conclude our study and propose further
research.

2. Methods

Our analysis is based on time series describing stock
log returns, which is the standard way for analysing price
movements. Thus data points are the log ratios between
consecutive daily closing prices (this can be done at any
other scale) [20]:

rt = ln(pt/pt−1). (1)

For the purpose of estimating mutual information we
need to discretize those data points. Thus we transform
the data points into 4 distinct states. The states repre-
sent 4 quartiles, for the discussion of the signi�cance and
robustness of this step see [40, 41].
On this basis we are estimating the partial mutual in-

formation (PMI), which is based on Shannon's entropy.
For a discrete random variable X with probabilities p(x)
of outcomes {x}, Shannon's entropy is de�ned as [42]:

H(X) = −
∑
x

p(x) ln p(x). (2)

Mutual information (MI) of two random variables X
and Y is given by

I(X,Y ) = H(X) +H(Y )−H(X,Y ), (3)

where H(X,Y ) is obtained from the joint distribution of
(X,Y ). MI is symmetric, and

0 ≤ I(X,Y ) ≤ min {H(X), H(Y )}. (4)

Mutual information measures information shared be-
tween two variables, thus both linear and nonlinear rela-
tionships between studied �nancial instruments are mea-
sured this way.

(863)
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Then partial mutual information I(X,Y |Z) denotes
the part of mutual information I(X,Y ) that is not in Z
and is de�ned as:

I(X,Y |Z) = H(X,Z) +H(Y, Z)

−H(Z)−H(X,Y, Z). (5)

PMI is symmetric so that I(X,Y |Z) = I(Y,X|Z) and
0 ≤ I(X,Y |Z). MI and PMI are only equal to 0 when X
and Y are strictly independent.

To estimate PMI we need an estimator of Shannon's
entropy. There is an abundance of estimators [43�48],
in this study we use the Schurmann�Grassberger esti-
mate of the entropy of a Dirichlet probability distri-
bution, which is thought to be the best choice outside
very speci�c conditions (particularly small samples) [49].
The Schurmann�Grassberger estimator is a Bayesian
parametric procedure which assumes samples distributed
following a Dirichlet distribution:

Ĥ(X) =
1

m+ |χ|N
∑
x∈χ

(#(x) +N)(ψ(m+ |χ|N + 1)

−ψ(#(x) +N + 1)), (6)

where #(x) is the number of data points having value x,
|χ| is the number of bins from the discretization step,
m is the sample size, and ψ(z) = d lnΓ (z)/dz is the
digamma function. The Schurmann�Grassberger estima-
tor assumes N = 1/|χ| as the prior [50].
For comparison we have also used Pearson's correla-

tion and partial correlation, and networks based on it, as
de�ned in [39].

We now turn to the networks we are creating based on
partial mutual information. First we re�ne the structural
view of the market o�ered by the networks based on cor-
relation. It is re�ned �rst by swapping correlation with
mutual information, which adds nonlinearity. We may
further re�ne this by removing the mediated parts of the
interrelations between �nancial instruments by control-
ling for a third variable with partial mutual information.
We take the minimum of the PMI calculated controlling
for all other �nancial instruments, to show only the part
of the mutual information not contained in other studied
time series. Thus taking in mind the standard mutual
information based metric [36, 37] the distance used for
the network topology is de�ned as:

d(X,Y ) = H(X,Y )− min
Z 6=X,Y

I(X,Y |Z). (7)

On this basis we may create a network with topological
restraints of our choosing, we calculate minimal spanning
trees and planar maximally �ltered graphs which we call
PMIMST and PMIPMFG. These trees and planar graphs
are created based on a list of d(X,Y ) sorted in increasing
order. By starting from the �rst entry of the list, we add
a corresponding link if and only if the resulting network
is still a tree or a forest (PMIMST) or is still planar, i.e.
it can be drawn on the surface of a sphere without link
crossing (PMIPMFG).

Second we may re�ne the partial correlation planar
graph as de�ned in [38] by directly swapping partial

correlation with partial mutual information. For this
purpose we need a measure of MI in�uence or in�uence
of an element Z on the pair of elements X and Y . This
quantity is large only when a signi�cant fraction of the
PM I(X,Y ) can be explained in terms of Z. This mea-
sure is de�ned as:

d(X,Y |Z) = I(X,Y )− I(X,Y |Z). (8)

We de�ne the average in�uence d(X|Z) of element Z on
the MIs between element X and all the other elements
in the system as

d(X|Z) = 〈d(X,Y |Z)〉Y 6=X,Z . (9)

In order to construct a planar graph based on PMI
we list the N(N − 1) values of the average MI in�uence
d(X|Z) in decreasing order. The construction protocol
of the network begins by considering an empty network
with N vertices. By starting from the �rst entry of the
list we put a link between them if and only if the resulting
network is still planar. Similarly we can create a related
minimal spanning tree by only adding a link if and only
if the resulting network is still a tree or a forest.
Here we note that instead of �ltering the information

by network topology as we are doing above we may also
�lter the information by using a threshold to �nd which
links should be entered into the network. Finding an ap-
propriate threshold is not trivial however, but one can
test for statistical signi�cance based on the fact that
I(X,Y |Z) when X and Y are independent conditioned
on Z follows a Gamma distribution with shape param-
eter κ = |Z|(|X| − 1)(|Y | − 1)/2 and scale parameter
Θ = 1/N [51].
We also note a few areas in which this methodology

can be extended. First we note that one could add
market (index) as a second variable which is being con-
trolled in PMI, thus eliminating the e�ects of general
market trends on the relationships between �nancial in-
struments. Further we note that another approach to
extending the analysis may be taken using transfer en-
tropy, which is a measure closely related to partial mutual
information [52]. Transfer entropy is a measure quantify-
ing causal information transfer between systems evolving
in time, based on appropriately conditioned transition
probabilities, thus it uses time lags. Time lagged causal
analysis can also be performed using correlation [53] or
mutual information [37] based method for �ltering sim-
ilarity measures into a network of statistically-validated
directed links.

3. Results

To �nd the networks presented above we have taken
log returns for 91 securities out of 100 which consti-
tute the NYSE 100, excluding those with incomplete
data. These log returns are based on daily closing prices.
The data has been downloaded from Google Finance
database available at http://www.google.com/�nance/
and was up to date as of the 11th of November 2013,
going 10 years back. The data is transformed in the
standard way for analysing price movements, that is so

http://www.google.com/finance/
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that the data points are the log ratios between consecu-
tive daily closing prices, as de�ned above, and those data
points are, for the purpose of estimating mutual informa-
tion, discretized into 4 distinct states.
Since there is no theory of �nancial markets we do not

have any frame of reference to de�nitely state whether
moving from correlation to mutual information and par-
tial mutual information is bringing the analysis forward.
We may only compare these two approaches and note
how di�erent the results are, and based on this we can
risk an educated guess on the quality and usefulness of
this method based on the fact that Shannon's mutual in-
formation is a more general measure than Pearson's cor-
relation. We need to remember that while changing the
particular methodology for creating networks of �nancial
markets is changing the results, these changes will not be
dramatic if the method is well-de�ned, thus graphically
we will not see a completely di�erent network. In other
words the stocks should be clustered by economic sectors
in all cases. But even small changes in these measure-
ments may be of importance, particularly if this method
is to be used in practice, especially automated analysis
or trading. Then there is no reason to use correlation
instead of mutual information, according to this study.
This is particularly important for intraday price changes,
where nonlinearity is signi�cantly more prevalent [41],
which is important with the rising popularity of intraday
and automated algorithmic trading.
Thus to analyse the di�erences we have created 6 sim-

ilarity measures for the networks, and for each of them
created a tree and a planar graph, creating 12 networks
together. The distances used are as follows:

1. d(X,Y ) =
√
2(1− ρX,Y );

2. d(X,Y ) = H(X,Y )− I(X,Y );

3. d(X,Y ) =
√

2(1−minZ 6=X,Y ρX,Y );

4. d(X,Y ) = H(X,Y )−minZ 6=X,Y I(X,Y |Z);

5. d(X|Z) = 〈d(X,Y |Z)〉Y 6=X,Z based on ρ;

6. d(X|Z) = 〈d(X,Y |Z)〉Y 6=X,Z based on I.

We can compare the networks on a node level, cluster
level, and network level. First at node level we calcu-
late Markov centrality (for detailed description see [54�
56]) for each node in all those networks and compare
them between networks obtaining correlations presented
in Figs. 1 (for trees) and 2 (for planar graphs). We note
that Markov centrality is basically a function of node de-
gree, thus an analysis of node degree would be virtually
identical. Similar analysis may be based also on node
betweenness and other measures. Analyses for trees and
graphs present similar data so we will comment collec-
tively. We can see that the re�nement of the standard
methods by using minimal partial correlation/mutual in-
formation controlling for third variables is only changing

the networks by about 10% (noise from mediating rela-
tionships), while moving from correlation to mutual in-
formation changes the networks by about 30%, hinting
that around a third of relationships between �nancial in-
struments is nonlinear. Further we note that the dynamic
approach is about 20�30% di�erent from the previous ap-
proaches, in this case the correlation and mutual informa-
tion are giving much more varying results, thus indicating
nonlinearity is more important in this dynamic assess-
ment. In general we can conclude that the networks are
signi�cantly di�erent (formal tests omitted due to space
limitations) and thus the presented approach is valid, if
the cluster level con�rms this.

Fig. 1. MC correlations for trees.

Fig. 2. MC correlations for planar graphs.
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Fig. 3. Partial mutual information PMFG.

On cluster level we con�rm that in all created net-
works the clusters have been aligned largely according to
economic sectors, which means that this important char-
acteristic of the network approach to �nancial markets
has been preserved. Preserving this information is im-
portant because it cannot be reproduced by simulating
a virtual market [57]. This can be shown numerically as
the ratio of arcs between stocks of the same sector to all
nodes as presented in Table. As can be seen without any
topological restraints the full market has 11.58% links
within sectors, but for our networks it is between 42%
and 67%, thus we see that this important feature is pre-
served. In general we can also see that mutual informa-
tion suits this task better, which further corroborates the
usefulness of our approach.

TABLE

Network comparision.

Network Tree ratio Graph ratio Clustering

1 62.22% 49.06% 17.60%

2 66.67% 55.81% 20.80%

3 64.44% 51.69% 14.60%

4 65.56% 54.68% 17.70%

5 48.89% 42.70% 5.30%

6 57.78% 47.19% 14.70%

Ref. 11.28% 11.28% 50.00%

On network level there is a limited possibility of inves-
tigation as most network-wide measures would be con-
strained by the common topological restraints we are
using. Nonetheless we have calculated clustering coef-
�cients (ratio of the number of triangles observed to
the number of possible triangles in the network) for
the planar graphs (there can not be any triangles in
trees), which are presented in Table below. As can
be seen, mutual information produces signi�cantly more
clustering than correlation. Nonetheless, partial corre-
lation/mutual information analysis creates slightly less
clustered networks, hinting that some clustering happens
due to mediating noise, but also due to nonlinearity.

Fig. 4. Partial mutual information planar graph.

The reference values in Table are calculated for a net-
work with no topological restraints.
Strictly as an example we have provided network num-

ber 4 in Fig. 3 and 6 in Fig. 4. The node size is based on
its centrality in the network.

4. Conclusions

We have analysed a method for producing networks
of �nancial markets based on partial mutual informa-
tion and how are those di�erent from networks based
on correlation, partial correlation and mutual informa-
tion. The analysis leads us to believe that mutual infor-
mation should be used in network analysis of �nancial
markets as it provides di�erent and likely more accurate
networks, and that partial mutual information may be
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used to re�ne this analysis even further, particularly in
controlling for mediating inference of third parties, thus
making the network closer to real structure of the market.
Further studies should be used based on other informa-
tion theoretic measures such as transfer entropy, and also
with controlling for more than one variable (particularly
controlling for the whole market), as well as with other
markets, and intraday price data.
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