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A new mathematical model of hysteresis loop has been derived. Model consists in an extension of tanh(·)
by extending the base of exp function into an arbitrary positive number. The presented model is self-similar and
invariant with respect to scaling. Scaling of magnetic hysteresis loop has been done using the notion of homogeneous
function in general sense.
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1. Introduction

In the two last decades the following models have been
accepted for a proper description of the hysteresis loop:

� Jiles-Atherton [1, 2] and Szczygªowski's supple-
ment [3] as well as Chwastek's modi�cation [4],

� Harrison [5, 6],

� Takács [7, 8],

� Zirka�Moroz [9].

For older approaches to the problem of magnetization
hysteresis we refer to books by Bertotti [10] and Cul-
lity [11]. For more recent approaches we refer to the
monograph [12]. Very recent paper by Zirka et al. [13] is
also remarkable due to new approach. Despite the mul-
tiplicity of hysteresis models developed to date, there is
no model in which self-similarity can be expressed by ho-
mogeneous functions in general sense. It is necessary to
remind that a far more general concept than universality
is scaling which applies very fruitfully to power losses in
magnetic materials [14]. Since these two problems are
related by the area of hysteresis loop, there should exist
an analogical representation of scaling for the magneti-
zation processes. The goal of the present paper is to
create a mathematical model which describes hysteresis
and enables to express its self-similarity by the homo-
geneous function in general sense. This function should
enable us to reproduce all magnetization processes inside
a major loop which will play a role of an envelope for
these processes.
It is well known that tanh(·) suits for model of initial

magnetization function. It describes properly the satu-
ration for both asymptotic values of the magnetic �eld:
H → ±∞ as well as the behavior of magnetization in
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the neighborhood of origin. The mentioned above pa-
per [7] starts from tanh(·) and describes phenomenolog-
ical model which gives complete description of the mag-
netic hysteresis. Moreover, this mapping helps to solve
problems of modeling the core losses in presence of DC
bias by the projection of the magnetic �eld just onto the
initial curve [15]. In this paper we present mathemati-
cal model of hysteresis in soft magnetic materials which
bases on an extension of the function tanh(·). The goal of
this paper is to derive mathematical model which prop-
erly describes the magnetization hysteresis and it enables
us to perform scaling of the hysteresis loop basing on
notions of self-similar system and homogeneous function
in general sense [14, 16].
This paper is organized as follows. In Sect. 1 we intro-

duce the extended tanh(·) function from which we derive
its basic properties. In Sect. 2 we deal with self-similarity
of the considered model and scaling. Conclusions are pre-
sented in Sect. 3.

2. Extension of tanh(·) function and

mathematical model of hysteresis

Let us start from the de�nition of tanh(·):

tanh(x) =
ex − e−x

ex + e−x
, (1)

where e is the base of the so-called natural logarithm.
So, let us generalize (1) by introducing the four bases
instead of e:

tanH(a, b, c, d|x) = ax − b−x

cx + d−x
, (2)

where a, b, c, d are arbitrary positive numbers.

2.1. Hysteresis in (magnetic �eld, magnetization) plane

In the �rst step we will derive a model of major hys-
teresis loop which is an envelope of the whole family of
loops of the particular considered case. Let us write down
the model expression for initial magnetization curve

MP (X) =M0 P (X, ε); X ∈ [0, Xmax] , (3)

where M0 is magnetization corresponding to saturation
expressed in T: [T], X ∈ {0, Xmax}, X = H

h where H is
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magnetic �eld, h is a parameter of the magnetic �eld di-
mension [A m−1] to be determined and where function
P (X, ε) is of the following form:

P (X, ε) =
aX−ε − b−X+ε

cX−ε + d−X+ε
, (4)

where ε is modeling parameter of the order of θ/2. Let
the upper branch of the hysteresis loop and the lower one
are of the following forms:

MF (X) =M0F (X, θ); MG(X) =M0G(X, θ), (5)

where

F (X, θ) =
aX+θ − b−X−θ

cX+θ + d−X−θ
,

G(X, θ) =
aX−θ − b−X+θ

cX−θ + d−X+θ
. (6)

θ is a model parameter depending on Xmax.

Fig. 1. A model of nucleation type hysteresis con-
structed with functions F , P and G according to (6),
(7), and (4), respectively.

Let us consider for illustration the following example:
M0 = 1, a = 4, b = 4, c = 4, d = 4, θi = 1.3 for
i = a, b, c, d. The magnetization as a function of the mag-
netic �eld possesses horizontal asymptotes for H → ±∞.
This means for our modeling that the functions F (X, θ)
and G(X, θ) have to possess the same asymptotic prop-
erties. These components get equal values for |H| = ∞.
In fact due to the uncertainty of measured magnitudes it
is possible to accept the saturation points at X = Xmin

and X = Xmax being the end points of the hysteresis
loop. Therefore, the modeling process has to ensure that
the initial function P (H) matches the origin and the up-
per end point of the loop. This e�ect can be controlled
by the θ parameter, see Fig. 1. Values of Xmax are de-
termined by the following relation:

|F (Xmax, θ)−G(Xmax, θ)| ≤ |ψ|, (7)

where ψ is measure of uncertainty of |MF (X)−MG(X)|
in dimensionless units: ψ = supX |MF (X)−MG(X)|/M0.

2.2. Scaling of magnetization's hysteresis loop

We present the scaling procedure on example of the
both branches of a major loop. Functions which have
to be scaled (5)�(7) consist of exponential functions and
their arguments are exponents. In such a case the scal-
ing can be performed on the basis of these functions,

while the exponents can be converted by gauge transfor-
mations. Let us assume that there exist real numbers
(α, β, γ, δ, ν) ∈ R5 such that ∀λ ∈ R+ and ∀χ ∈ R the
following relations hold:

MF (X)

M0
λν =

(λαa)X+θaχ − (λβb)−X−θb−χ

(λγc)X+θcχ + (λδd)−X−θd−χ
,

MG(X)

M0
λν =

(λαa)X−θaχ − (λβb)−X+θb−χ

(λγc)X−θcχ + (λδd)−X+θd−χ
, (8)

then MF (X) and MG(X) make a set of homogeneous
functions in general sense.

2.3. Group symmetry of the considered model

α, β, γ, δ, ν are scaling exponents and χ is a gauge
transformation parameter. We have assumed that the
gauge transformation acts directly on the argument of
the magnetization function: MF (X) → MF (X + χ),
while scaling acts directly on each base of exponential
functions, for example: aX → (λαa)X . We will show
that this action can be transformed to an operator act-
ing directly on the linear function of X. The derived
transformation (8) depends on two parameters: λ and χ.
Each of them generates one parameter group: multiplica-
tive group Gλ and additive one Gχ, respectively. By the
de�nitions how do the scaling and gauge transformations
act on the model equations the group of symmetry of (8)
is the following semidirect product [17]:

Gλ,χ = Gλ o Gχ. (9)

Group action in Gλ,χ is de�ned as follows. Let {p1, χ1} ∈
Gλ,χ and {p2, χ2} ∈ Gλ,χ. Then
{p2, χ2}o {p1, χ1} = {p2p1, p2χ1 + χ2}. (10)

The group structure of Gλ,χ will play important role in
derivation relations between hysteresis loops.

2.4. Symmetric model

Now we are ready to prove that the symmetric
model of the hysteresis loop is invariant with respect
to λi, χj ∈ Gλ,χ. By the symmetric model we mean a
case characterized by the following relations between ba-
sis of (4), (6), (7):

a = b = c = d. (11)

Otherwise a model is non-symmetric. For further consid-
erations we take into account the following formula for
MF (X), MG(X), MP (X):

MF (X)

M0
=

(a)X+θ − (a)−X−θ

(a)X+θ + (a)−X−θ
, (12)

MG(X)

M0
=

(a)X−θ − (a)−X+θ

(a)X−θ + (a)−X+θ
, (13)

MP (X)

M0
=

(a)X+ε − (a)−X−ε

(a)X+ε + (a)−X−ε
(14)

Theorem: If basis of the model (4), (6) and (7) sat-
isfy (11) then the model of hysteresis loop is invariant
with respect to scaling and gauge transformation.
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Proof: Let us assume an action of a group element be-
longing to Gλ,χ. For the symmetry condition (11) the
relation (8) takes the following form:

MF (X)

M0
λν =

(λαa)X+θaχ − (λαa)−X−θa−χ

(λαa)X+θaχ + (λαa)−X−θa−χ
,

MG(X)

M0
λν =

(λαa)X−θaχ − (λαa)−X+θa−χ

(λαa)X−θaχ + (λαa)−X+θa−χ
, (15)

where we have to remember that according to (10) the
order of action is relevant. First the scaling has to be
done before the gauge transformation. According to the
assumptions just above (8) we are free to assume that

λα = ap−1. (16)

Then the relations (15) after simple evaluations take the
following form:

MF (X)

M0
an =

(a)p(X+θ)+χ − (a)p(−X−θ)−χ

(a)p(X+θ)+χ + (a)p(−X−θ)−χ
,

MG(X)

M0
an =

(a)p(X−θ)+χ − (a)p(−X+θ)−χ

(a)p(X−θ)+χ + (a)p(−X+θ)−χ , (17)

where n = ν
α (p − 1) and p ∈ R \ {0}. Introducing the

following new variables:

M ′0 =M0a
−n, X ′ = pX + χ, θ′ = pθ, (18)

we get (12). The initial magnetization curve (14) is in-
variant with respect to the scaling and the gauge trans-
formations as well. The proof goes the same way as for
(12) and (13).

2.5. Interpretation of scaling and gauge transformation

In order to make an interpretation of the derived scal-
ing and gauge transformation we present results of their
action on the hysteresis models, see Figs. 2�4. Figure 2
presents how pure gauge transformations generate a dis-
placement of transformed loops along the horizontal axis.
Figure 3 presents compression of a loop along the verti-
cal axis under the scaling. Finally, for large value of the
scaling parameter p the transformed loops resemble the
Preisach hysterons (Fig. 4 [18]).

Fig. 2. Magnetic hysteresis family for p = 1, n = 1,
θ = 1.3, ν/α = 1.

Fig. 3. Magnetic hysteresis family for χ = 0, n = 1,
θ = 1.3, ν/α = 1.

Fig. 4. Magnetic hysteresis family for the following
values of the model and scaling parameters: (a) θ = 3,
p = 14, ν/α = −0.18, χ = 0, (b) θ = 2, p = 13,
ν/α = −0.18, χ = 0, (c) θ = 1.3, p = 13, ν/α = 0,
χ = 0.

2.6. Division of the hysteresis loops space in Gλ,χ
Let L be the space of hysteresis loops created accord-

ing to algorithm described in Sect. 2.4 for all the values
a > 1. Let us consider the two loops li ∈ L and lj ∈ L.
By de�nition, li and lj belong to the same class if there
exists {pj , χj} ∈ Gλ,χ such that

lj = {pj , χj}li, (19)

where the action of {pj , χj} in the L space is de�ned
by (15)�(18). Subset Li consisting of the all lj satisfy-
ing (19), constitutes the class li so-called orbit. Equa-
tion (19) is equivalence relation due to the group struc-
ture of Gλ,χ. Therefore, (19) constitutes division of L.
Any two loops of the same base a are equivalent due to
the structure of Gλ,χ and the two loops having di�erent
basis belong to two di�erent orbits. All orbits cover the
full L space.

3. Conclusions

By physical models of the hysteresis loops we try
to explain origin of the magnetic materials properties.
Whereas in designing the magnetic materials we need



An Approach to Modeling and Scaling of Hysteresis. . . 853

analytic formulae returning real values of physical mag-
nitudes which are relevant in this process. Just the math-
ematical models together with an experimental data con-
stitute powerful tool for designers [19, 20]. In this paper
we have derived the simple model which is promising for
the applications mentioned above. The introduced group
theoretical methods in analysis of the hysteresis loops
help us to divide the hysteresis loops space into orbits
in Gλ,χ. This division enables us to create a minimal
set of independent loops which constitutes a base in the
hysteresis loops space.
There are needs to extend the described model onto

induction. Work on this subject is in progress and con-
centrates on the three following problems: modeling the
proper asymptotic features when H → ±∞, investigat-
ing the algebraic structure generated by (6), (8), and
deriving subsets of singular parameters values.
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