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Elastic Scattering in Kane Type Semiconductor Circular Dots
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In this paper we have investigated the scattering of electrons by a circular narrow penetrable δ-type potential
barrier in A3B5 type semiconductors by using three-band Kane model. By using the Kane equations with the
continuous conditions of the wave functions and �ux discontinuous at the interface of two circular dots, we have
analytically calculated the total cross-section and the Boltzmann conductivity for the semiconductor quantum rings
with delta potential barrier. It has been shown that the quasi-bound states appear as peaks in the cross-section.
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1. Introduction

In recent years, there have been intensive studies in
connection with features of quantum nanostructures such
as quantum wells, wires and dots [1]. Electrons traversing
through ultra-small semiconductor microstructures give
rise to a fascinating regime of quantum transport [2].
Recent progress on the synthetic chemistry of semicon-
ductor nanocrystals has made it possible to access high
quality semiconductor nanocrystals with controlled size,
shape, and optical properties. The low-dimensional semi-
conductor nanostructures, such as quantum dots, quan-
tum wires, and quantum wells, have been applied in sev-
eral areas. Current technologies can be used to fabricate
quantum dots of various types, including both core�shell
ones [3] and those embedded in a matrix made of a dif-
ferent semiconductor material. It has been shown exper-
imentally that core�shell quantum dots can be e�ectively
used in biology and medicine [4�6]. Core�shell quantum
dots are primarily used for in vivo imaging and identify-
ing living cells. Core�shell quantum dots have a nanome-
ter sized semiconductor core coated with a thin layer of a
outer shell material. The carrier spectrum in such a dot
strongly depends on the core radius and the thickness
of the coating shell. The scattering of two dimensional
massless Dirac electrons was investigated [7] in presence
of a random selected array of circular mass barriers.
In this paper, the electron scattering problem was

investigated for a δ-type potential barrier in narrow-
gap semiconductors circular dots using three-band Kane
model, and calculated the cross-section and the Boltz-
mann conductivity to demonstrate how possible the
quasi-bound states reveal themselves in the scattering
cross-section and the Boltzmann conductivity.
The three-band Kane model faithfully describes the

wave functions and spectrum of the carriers in narrow-
gap A3B5 semiconductors. The energy spectrum is
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parabolic only in the A3B5 type semiconductors near
the bottom of their conduction band. In the major-
ity of other substances, non-parabolicity of the energy
spectrum plays an important role. While considering the
non-parabolicity of the electron dispersion in narrow and
medium gap semiconductors the coupling of conduction
and valance bands should be taken into account. This is
the purpose of our work.

2. Theory

The model which is considered in this study consists
of an open circular quantum dot which is a narrow-gap
semiconductor having radius ρ. It is surrounded by a
very thin insulating circular layer and placed in the same
semiconductor region. We treat the thin insulating cir-
cular layer as a δ-type potential at ρ = a (see Fig. 1),
U(ρ) = UaΩδ(ρ − a), where δ(ρ − a) is the Dirac delta
function. We study the scattering of the Kane electrons
by extremely narrow penetrable circle (i.e., a δ-type po-
tential). Now it is assumed that an electron with energy
E travels from III. section of the circular dot through
I. section of the circular dot.

Fig. 1. Penetrable circular mass barrier model.

According to the standard theory of scattering wave
functions are as follows:

Ψ = e ikx +
f(θ)
√
ρ

e ikρ, (1)

where they consist on the incident wave in the x direction
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and the scattered section. As the incoming wave-function
part is normalized to unit �ow density, the di�erential
cross-section is equal to the radial �ow of electrons cor-
responding to the scattered wave-function part, namely

σ =

2π∫
0

|f(θ)|2 dθ. (2)

The transport cross-section

σtr =

∫ 2π

0

|f(θ)|2 (1− cos θ) dθ. (3)

In the calculations in this paper we use the nonparabolic
approximation for the energy dependences of the elec-
tronic e�ective mass, proposed in Refs. [8, 9].

In circular coordinates, it becomes(
− ~2

2m(E)
∆2 − E + Uaδ(ρ− a)

)
Ψ(ρ, φ) = 0, (4)

where
~2

2m(E)
=
P 2

3
(

2

E + Eg
+

1

E + Eg + ∆
). (5)

P is the matrix element which indicates the interac-
tion between the conduction band and the valence band.
The matrix element P is expressed in terms of the ef-
fective mass at conduction band bottom mn and other
parameters (Eg is the band gap and ∆ is the spin�orbit
splitting energy of the valence bands)

P 2

3
=

~2

2mn

Eg(Eg + ∆)

(3Eg + 2∆)
, (6)

where ∆2 is two-dimensional Laplacian. In polar coor-
dinates we expand the total wave functions into partial
waves

Ψ(ρ, ϕ) =
∑
l

exp(i lϕ)Rl(ρ). (7)

The radial function Rl(ρ) can be used to meet di�eren-
tial Eq. (8):[

~2

2m(E)

(
d2

dρ2
+

1

ρ

d

dρ
− l2

ρ2

)
+ E − Uaδ(ρ− a)

]
×Rl(ρ) = 0. (8)

The regular solution at the origin would be as follows:
Rl(ρ) = TJl(kρ). (9)

The solution for the outer section is a linear combination
of the cylindrical Bessel functions that can be written as

Rl(ρ) = Al [Jl(kρ) cos δl + Yl(kρ) sin δl] , (10)
where Jl(kρ) and Yl(kρ) are Bessel functions of �rst and
second kind, δl is phase shift and using the di�erential
Eq. (8), we found the k wave vector as Eq. (11):

k =

√
3

P 2

E(E + Eg)(E + Eg + ∆)

(3E + 3Eg + 2∆)
. (11)

The radial wave function must be continuous at the po-
tential singularity but �rst derivative of the function
must be discontinuous at ρ = a. Thus, we have

Ra+(ρ) = Ra−(ρ), (12)

d

dρ
Ra+ −

d

dρ
Ra− =

2m(E)

~2
UaR(a). (13)

To determine the phase shift, we should take into con-
sideration the boundary conditions (12), (13) and the
Wronskian Eqs. (14):

Y ′l (z)Jl(z)− J ′l (z)Yl(z) =
2

πz
. (14)

We get

tan δl=
Jl(kρ)

2

Ωπ
3Eg+2∆

Eg(Eg+∆)

(E+Eg)(E+Eg+∆)

3E+3Eg+2∆ Jl(kρ)
− Yl(kρ)

, (15)

where Ω = 2mnUa
2

~2 characterizes the penetrability of the
barrier. In case of ∆ → ∞ formula (15) gives the same
results with equation A6 in [7]. The value Ω → ∞ cor-
responds to a completely impenetrable barrier, while the
value Ω = 0 corresponds to the case of complete pene-
tration, or the absence of any scatter.
Usually the exclusion of the incoming plane wave from

the total wave function (7) is done in the asymptotic
region where kρ → ∞. Here we use the asymptotic of
the Bessel functions

Jl(kρ) ≈
√

2

πkρ
cos
(
kρ− π

2
l − π

4

)
,

Yl(kρ) ≈
√

2

πkρ
sin
(
kρ− π

2
l − π

4

)
(16)

that components of the total wave functions allow us to
write as∑

l

exp(i lϕ)Rl(ρ) =√
2

πkρ

∑
l

exp(i lϕ)Al cos
(
kρ− π

2
l − π

4
− δl

)
.(17)

In this incoming plane wave can be presented as in the
asymptotic region

e ikx =

∞∑
l=−∞

i l e i lθJl(kρ) ≈√
2

πkρ

∞∑
l=−∞

i l e i lθ cos
(
kρ− π

2
l − π

4

)
(18)

by replacing these equations in (1), we get Eq. (19):√
2

πkρ

∞∑
l=−∞

i l e i lθ cos
(
kρ− π

2
l − π

4

)
+
f(θ)
√
ρ

e ikρ =√
2

πkρ

∞∑
l=−∞

e i lθAl cos
(
kρ− π

2
l − π

4
− δl

)
, (19)

which may be written as√
2

πkρ

∞∑
l=−∞

i l e i lθ 1

2

(
e i(kρ−π2 l−

π
4 ) + e− i(kρ−π2 l−

π
4 )
)

+
f(θ)
√
ρ

e ikρ =

√
2

πkρ

∞∑
l=−∞

e i lθAl

×1

2

(
e i(kρ−π2 l−

π
4−δl) + e− i(kρ−π2 l−

π
4−δl)

)
. (20)
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The coe�cients of e ikρ and e− ikρ in Eq. (19) must be
equal. From it we �nd expression for

Al = i l e− iδl , (21)

f(θ) =
1√

2π ik

∞∑
l=−∞

e i lθ [exp (2iδl − 1)] . (22)

Inserting the expression into Eq. (2) we obtain the total
cross-section as

σ =

2π∫
0

|f(θ)|2 dθ =
4

k

∑
l

sin2 δl. (23)

The transport scattering cross-sections can be expressed
in terms of δl as follows from Ref. [10]:

σtr =
2

k

∑
l

sin2 (δl+1 − δl) . (24)

The presented (24) in the formula can be used in order
to calculate the Boltzmann conductivity

σB =
ne2

m
τtr, (25)

where the transport relaxion time equals
1

τtr
= N i vσtr, (26)

where N i is the areal impurity density, v is the electron
velocity. The Boltzmann conductivity can written as af-
ter using (26):

σB =
ne2

N imvσtr
= σ0

πn

N i

∑
l

sin2 (δl+1 − δl)
, (27)

where σ0 = e2

2π~ , n is the number of conduction electrons
in unit area and δl is the phase shift of i-th partial wave.

3. Results and discussion

We present scattering of the Kane electrons by a pen-
etrable circle for model consisting of InSb/very thin in-
sulating circular layer/InSb system. We used the value
of the e�ective mass of electrons m = 0.016m0 and band
gaps εg for InSb εg = 0.23 eV, where m0 is the mass
of free electrons provided in Ref. [9]. The inner section
radius of circular dots was taken equal to ρ = 200 Å.

Fig. 2. The l = 0 contribution to the total cross-
section for Kane (curve 1) and Schrödinger (curve 2)
electrons scattered on penetrable circular potentials.

Fig. 3. The dependence of total cross-section as a func-
tion of the electron energy for Kane (curve 1) and
Schrodinger (curve 2) electrons scattered on penetrable
circular potentials.

Fig. 4. The Boltzmann conductivity as a functions of
the Electron energy for di�erent values Ω .

The l = 0 contribution of the total cross-section for
Kane (curve 1) and Schrödinger (curve 2) electrons scat-
tered on penetrable circular delta potentials for Ω = 30
is shown by Fig. 2. The term Kane type electrons can
be de�ned as semiconductors which are applied to Kane
model and term Schrödinger electrons de�ned as semi-
conductors which are applied to simple parabolic model.
Therefore electrons scattering of Kane is shown by the

curve 1, but the curve 2 shows the parabolic band model.
Narrow peaks appear close to the positions of the bound
states of a dot that are de�ned by the equation Jl(kρ) =
0. In the case of Kane's dispersions the energy of quasi-
bound states are shifted to the left.
In Fig. 3 we plot the total cross-section as a func-

tion of E. The resonances are shown up as small peaks,
corresponding to the quasi-bound states. In Fig. 4, we
plot the Boltzmann conductivity as a functions of the
electron energy for di�erent values of Ω . We observe
many resonances, which diminish for increasing electron
energy E. These resonances correspond to quasi-bound
states. The value Ω → ∞ corresponds to a completely
impenetrable circle and the absence of any scattered.
(Figure 4 also shows that in this case value Ω = 1000.)

4. Conclusion

In this work we studied elastic scattering with cylindri-
cal δ-type potential barrier in narrow-gap semiconductors
ring. For this purpose, we investigated the scattering of
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Kane electrons by circular penetrable scatterer. The to-
tal cross-section for scattering on penetrable delta bar-
riers exhibits resonances due to the presence of quasi-
bound states in the barriers that show up as peaks in the
cross-sections. The obtained results were compared to
results for scattering of Schrödinger electrons by similar
scatterers. This was demonstrated by comparing �gures.
There is an essential di�erence in the energy dependence
of the cross-section between Kane and Schrödinger elec-
trons. Finally we calculated the Boltzmann conductivity
and show that the Boltzmann conductivity as function
of the electron energy exhibits a pronounced oscillatory
structure due to the presence of quasi-bound states.
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