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We seek for an oscillating center solution of the wave function satisfying the Schrödinger equation for a
nonrelativistic charge particle in an arbitrary external �eld, where the oscillating center of physical system is a
motion governing by a guidance formula of the classical mechanics and at the same time, the physical system
obeys the rule of quantum mechanics. In terms of our approach, one enables to know how quantum process may
actually come about. The results are applied to analyze the Landau level. We explain successfully that the orbit
of oscillator center for the Landau level is circle.
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1. Introduction

A complete description of the physical state in classi-
cal mechanics can be obtained by stating all its coordi-
nates and velocities at a given instant. With these ini-
tial data the dynamic equations of classical motion com-
pletely determine the behavior of the system at all sub-
sequent times. Di�erent to the classical mechanics the
physical state is described by a wave function satisfying
the Schrödinger equation [1] in terms of probability in-
terpretation [2]. An equivalent formulating matrix was
provided by Born, Jordan and Heisenberg on about the
same time [3]. When the location of a microscopic object
is observed by experimenters, the probability of �nding
it in each region depends on the magnitude of its wave
function at the time of observation. Therefore it is impos-
sible to determine the coordinates and the corresponding
velocities simultaneously.
The wave functions can describe combinations of dif-

ferent states called superpositions. A microscopic ob-
ject in a superposition of several di�erent locations can
occupy several di�erent positions and jumps from one
point to another [4]. It appears that the communicate be-
tween the superposition is faster than the speed of light.
The particles in a well-de�ned superposition are said to
be coherent. The action of observing the quantum su-
perpositions, however, triggers an abrupt change in its
wave function, commonly called a collapse according to
the Copenhagen interpretation of the quantum mechan-
ics [5]. The measurement problem for the quantum su-
perposition lies at the heart of quantum mechanics and
gives rise to many of its paradoxes [6].
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For closed physical system in a quantum state of a
given energy the wave function is only a property of a sta-
tistical ensemble of similarly prepared systems and tells
nothing about the time evolution properties of individual
physical systems in terms of the probability interpreta-
tion. Thus the wave function of the physical system with
a constant Hamiltonian in the standard quantum me-
chanics is time-independent, but it does not mean that in-
dividual system does not depend on time. It is clear that
the observed world depends on the time [7, 8]. Therefore,
it is necessary to reconcile an observed time-dependence
with a time-independent wave function of the universe.
In the domain of dimension of the order of 10−13 cm

or less the Copenhagen interpretation to quantum me-
chanics is totally inadequate as pointed out by Bohm [7].
He tried to describe the seeming quantum randomness in
terms of some hidden variables carrying particle internal
behavior. The particles actually have �xed positions and
momenta at all times but move in a quantum potential
in terms of a consequence of the Schrödinger equation.
The Bohm theory enables one to understand intuitively
and imaginatively where quantum process may actually
come about.
Many years later, Bell [9] recasted the Bohm original

theory in a very simple and compelling form. He showed
that in this case some quantities, which could be mea-
sured in certain di�cult experiments, would inevitably
disagree with the standard quantum predictions.
In the sense, however, the suggestion of hidden vari-

ables may be valuable for the statistical ensemble in-
terpretation. In addition the Bohm theory in terms of
deterministic particle trajectories [10�12] was originally
developed to o�er a possible resolution of the interpreta-
tive di�culties in the quantum mechanics and serve as a
practical tool in various applications [11�17].
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In this work, di�erently from the Bohm hidden vari-
able theory, we take the center of mass of physical system
as a classical motion but the whole physical systems sat-
isfy still the quantum rule, i.e., the Schrödinger equation,
where a time-independent wave function is replaced by a
time-dependent one with the observable universe. which
may be helpful for one to understand how a quantum
process take place. Our approach is applied to describe
the motion of an oscillator center for the Landau level.

2. Particle in magnetic �eld

Let us consider a nonrelativistic particle with charge
e in an arbitrary external magnetic �eld described by a
vector A = A(r, t) potential with the Hamiltonian,

H(t) = 1

2M
(P̂ − eA)2 =

1

2M
(− i 5−eA)2, (1)

in the units system where ~ = 1.
The time-dependent Schrödinger equation is given by

i∂tΨ(r, t) = H(t)Ψ(r, t). (2)

The solution of Eq. (2) can be constructed by the eigen-
values of Hamiltonian (1). The instantaneous eigenequa-
tions satisfy

H(t)Φn(r, t) = En(t)Φn(r, t), (3)

where En(t) are eigenvalues and Φn(r, t) are correspond-
ing eigenvactors.
The general solution Ψ(r, t) of the Schrödinger equa-

tion can be written as a linear combination in terms of
the eigenvectors, i.e.,

Ψ(r, t) =
∑
m

cm(t)Φm(r, t) =∑
m

am(t) exp

(
− i

∫ t

0

Em(t′)dt′
)
Φm(r, t), (4)

with the initial condition am(0) = 1. Inserting Eq. (4)
into Eq. (2) and using the adiabatic approximation we ob-
tain

ȧn(t) = −an(t)
(
Φn(r, t),

d

dt
Φn(r, t)

)
. (5)

Integrating of Eq. (5) gives

an(t) =

an(0) exp

(
−
∫ t

0

(
Φn(r, t

′),
∂

∂t′
Φn(r, t

′)

)
dt′
)
,(6)

where an(0) = 1.
For a normalized eigenstate with the normalization

condition (Φn(r, t),Φn(r, t)) = 1 we �nd(
Φn(r, t),

∂

∂t
Φn(r, t)

)+

=

−
(
Φn(r, t),

∂

∂t
Φn(r, t)

)
, (7)

which is an imaginary number. Thus

γBn (t) = i

∫ t

0

(
Φn(r, t

′),
∂

∂t′
Φn(r, t

′)

)
dt′, (8)

is pure phase independently of the dynamic evolution of
the system and therefore is called a geometric phase [18].
Inserting Eqs. (8) and (6) into Eq. (4), we �nd that

di�erently from the constant Hamiltonian system, the
state vector Ψ(r, t) include two phases, i.e., the dynamic
phase γdn(t) and the geometric phase γBn (t).

The geometric phase (8) associated with cyclic or ape-
riodical quantum evolution cannot be modi�ed and elim-
inated by a local gauge transformation [19, 20] because
of the gauge invariance. Thus the evolving memory of
quantum system is kept in terms of such geometric phase.

3. Stationary state

Stationary quantum electron states in a constant
magnetic �eld are well-known as quantized Landau
states [20, 21]. The Landau levels are essential in the
study of quantum Hall e�ects because their elegant an-
alytical properties enable to construct the fractional
states [22�24]. In the following, we consider the behavior
of an electron in an external time-independent electro-
magnetic �eld described by potentialA = A(r). One has

B(r) = ∇×A(r). (9)

By setting Ψ(r, t) = exp(− iEt)Φ(r), the time-
independent Schrödinger equation for the stationary
states of the electron is given by

1

2M
(− i 5−eA(r))

2
Φ(r) = EΦ(r). (10)

In order to simplify our calculation without the loss of
generalization we consider a simplest magnetic �eld, i.e.,
B = (0, 0, B) = const. It is obvious that there exists
a freedom in the choice of vector potential for a given
magnetic �eld. However, the Hamiltonian is gauge in-
variant, which means that adding the gradient of a scalar
�eld A(r) changes the overall phase of the wave function
by an amount corresponding to the scalar �eld. Physi-
cal properties are not in�uenced by the speci�c choice of
gauge. Under the Landau gauge,

Ax = −By, Ay = Az = 0, (11)

Eq. (10) is rewritten as

1

2M

((
P̂x −

eBy

c

)2

+ P̂ 2
y + P̂ 2

z

)
Φ(r) = EΦ(r).(12)

Note that [H, P̂x] = [H, P̂z] = 0, so it is reasonable to
seek for the solution of Eq. (12) in the form

Φ(r) = exp (i(Pxx+ Pzz))χ(y), (13)

where Px and Pz are eigenvalues of the operators P̂x and
P̂z, respectively. Inserting Eq. (13) into Eq. (12), we have

− 1

2M
χ′′(y) +

1

2
Mω2(y − yp)2χ(y) =(

E − P 2
z

2M

)
χ(y), (14)

where ω = eB
Mc is just a classical frequency of orbital mo-

tion of charged particle in magnetic �eld and yp = cPx

eB .
Eq. (14) is an equation of harmonic oscillator with an os-
cillation center yp. Thus the solution of Eq. (14) is easy
to be obtained as
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χk(y) = Ak exp

(
− (y − yp)2

2l2B

)
Hk

(
y − yp
lB

)
, (15)

with the eigenvalues,

Ek(Pz) =
1

2M
P 2
z +

(
k +

1

2

)
ω, k ≥ 0, (16)

which has an energy band structure characterized by two
quantum numbers. Energy levels labeled by k are called
Landau levels.
Combining Eq. (13) and (15), the wave vector Φ(r)

can be written as

Φk(r) = Ak exp

(
i(Pxx+ Pzz)−

(y − yp)2

2l2B

)
×Hk

(
y − yp
lB

)
, (17)

lB =
( c

eB

) 1
2

, Ak =

(
1

lB ·
√
π2k · k!

)1/2

. (18)

The wave function can be factorized as a product of mo-
mentum eigenstates in the x- and z-directions and har-
monic oscillator eigenstates shifted by an amount in the
y-direction.
It is apparent that the oscillator center in Eq. (16) is

spurious, in this sense, because yp =
cPx

eB is a constant and
not reference point on the y-axis. It is, therefore, an indi-
cation of breaking the translational symmetry. It is well-
known, however, that the orbits in a magnetic �eld are
circles. Therefore, it is need to look the physical principle
for a moving center.
Under the symmetric gauge the vector potential is

given by

Ax =
1

2
By, Ay = −1

2
Bx, Az = 0. (19)

The Schrödinger equation in this gauge is

1

2M

((
P̂x−

eBy

2c

)2

+

(
P̂y+

eBx

2c

)2

+P̂ 2
z

)
Φ=EΦ. (20)

Setting

η =
x− iy

2lB
, η∗ =

x+ iy

2lB
, (21)

we de�ne two pairs of creation and annihilation opera-
tors as:

a =
1√
2

(
η +

∂

∂η∗

)
, a+ =

1√
2

(
η∗ − ∂

∂η

)
, (22)

and

b =
1√
2

(
η∗ +

∂

∂η

)
, b+ =

1√
2

(
η − ∂

∂η∗

)
, (23)

with the relations [a, a+] = 1, [b, b+] = 1 and [a, b] =
[a, b+] = 0.
In terms of the creation a+ and b+ and annihila-

tion a and b operators, the eigenfunctions in symmetric
gauge are

Φn,m(η, η∗) = Nn,m(b+)m(a+)n e−η
∗η, (24)

where Nn,m is normalized constant.
From Eq. (24), the general eigenfunction can be writ-

ten as any linear combination
∑
m cmη

mΦ0(η, η
∗), where

Φ0(η, η
∗) = exp

(
−|η|2

)
is a translation-equivalent state

with a di�erent center by picking up an additional
(gauge-dependent) phase factors from the vector poten-
tial. If the displacement is more than ∼ lB the overlap is
small with the original state under translating the wave
function Φ0(r) with the center r0 = 0 along a straight
line to another center r0 6= 0.
From Eqs. (16) for the Landau gauge and (24) for

the symmetric gauge we see that di�erently from the
time-dependent Hamiltonian system, the stationary state
from the Schrödinger Eq. (2) with the form Ψ(r, t) =
Φ(r) exp(− iEt) is essentially time-independent because
of |Ψ(r, t)|2 = |Φ(r)|2. At the same time the geomet-
ric phase disappears. Therefore it is needed to seek for
an observed time-dependence for the physical system.
It may be reasonable to express it in terms of the classical
motion of oscillator center.

4. Classical motion of mass center

The law governing the classical motion of physical sys-
tems is the principle of least stationary action S, which
is a variational principle that when applied to the action
of a mechanical system, one can obtain the di�erential
equations of motion of the physical system. The action S
is de�ned by:

S =

∫ t2

t1

L(xci, ẋci, t)dt, (25)

where t is time, the dot denotes the time derivative and
L(xci, ẋci, t) is a Lagrangian function in which contains
all physical information concerning the system and the
forces acting on it.
In order to deduce the Hamilton principle, we replace

∂L
∂ẋci

by pci in the following:

dL(xci, ẋci, t) =∑
i

(
∂L

∂xci
dxci + d(pciẋci)− ẋcidpci

)
, (26)

and

ṗci =
dpci
dt

=
d
(
∂L
∂ẋci

)
dt

=
∂L

∂xci
. (27)

Next, we de�ne the Hamiltonian of system as:

Hc(pci, xci, t) =
∑
i

(pciẋci)− L. (28)

Using Eqs. (26) and (28), we can write the
dHc(pci, xci, t) as

dHc(pci, xci, t) = −
∑
i

(
∂L

∂xci
dxci − ẋcidpci

)
. (29)

On the other hand, Hc(pci, xci, t) is a function of pci
and xci. Thus we have

dHc(pci, xci, t) =
∑
i

(
∂Hc
∂pci

dpci +
∂Hc
∂xci

dxci

)
. (30)

Comparing Eq. (29) with Eq. (30) and using Eq. (27),
we have

ẋci =
∂Hc
∂pci

, ṗci = −
∂Hc
∂xci

=
∂L

∂xci
, (31)
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which is just the Hamilton canonical equation.
Inserting Eq. (28) into Eq. (25) one �nds

S=

∫ t2

t1

L(xci, ẋci, t)dt=

∫ t2

t1

(∑
i

(pciẋci)−Hc

)
dt. (32)

Using the Hamilton canonical Eq. (31) we have

∂S

∂xci
=

∫ t2

t1

(
−∂Hc
∂xci

)
dt =

∫ t2

t1

ṗcidt = pci, (33)

with the initial condition pci(0) = 0.

∂S

∂pci
=

∫ t2

t1

(
ẋci−

∂Hc
∂pci

)
dt =

∫ t2

t1

(ẋci−ẋci)dt = 0. (35)

Equation (33) can be rewritten as

∇cS = pc =M ṙc, (35)

which is called as a guidance formula. Equation (35)
indicates that a local velocity �eld can be de�ned at each
point of the system and by integrating in time one can
obtain the corresponding classical trajectory.

5. Motion of center of mass in electromagnetic

�eld

The Hamiltonian principle is more general than the
Newton equation of motion that has broad applicability
including electromagnetic �elds, the motion of waves, and
special relativity.
Using the electromagnetic �eld Hamiltonian Hc =

1
2M (pc−eAc)

2+eϕ(rc) and Hamiltonian Eq. (31) we have

ṙc =
∂Hc
∂pc

=
1

M
(pc − eAc) (36)

and

M r̈c=ṗc−eȦc=−
∂Hc
∂rc
−eȦc=eEc+evc ×Bc, (37)

where Ec = ∇cϕ(rc)− ∂Ac

∂t and Bc = ∇c ×Ac.
According to Eqs. (27), (33) and (36) the guidance

formula is modi�ed as

∇cS = pc + eAc =M ṙc + eAc, (38)

in the electromagnetic �eld.
The solution to Eq. (38) can be written as

S(rc, t) =Mrc · ṙc + erc ·Ac + ξ(t), (39)

where ξ(t) will be determined by the energy conservation
in the following.
Using Eqs. (38) and (39), we have

∇2
cS(rc(t)) = e∇c ·Ac, (40)

and
∂S

∂t
=M ṙ2c+Mrc · r̈c+eṙc ·Ac+erc · Ȧc+

dξ

dt
. (41)

6. Wave function in classical mass center

The wave functions (16) and (24) of stationary state
with a given energy from the Schrödinger equation with
the form Ψ(r, t) = Φ(r) exp(− iEt) does not mean that
individual system does not depend on time [25, 26], while
the whole phase factor exp(− iEt) may be dropped o� in

the quantum calculation. Especially, the probability is
|Ψ(r, t)|2 = |Φ(r)|2 does not depend on evolving time.
Thus Eqs. (16) and (24) do tell nothing about the time
evolution properties of individual physical systems.

In order to seek for the time evolution properties of
physical s stem, we rephrase the Schrödinger Eq. (2) as
invariant under the acting transformation

Ψ (r − rc(t)) = e iS(rc(t))Φ (r − rc(t)) , (42)

where S(rc(t)) is the classical action satisfying Eq. (38)
and rc(t) is a center coordinate of physical system.

A located scatter center of an e�ective two-dimensional
potential is important for the integer quantum Hall e�ect
as pointed out by Ando, Matsumoto and Uemura [27] be-
cause the relation between the Hall conductivities σXY
and σXX can be deduced. In the following, therefore, we
separate the vector potential into two parts, i.e.:

A(r) = AR +Ac(rc), (43)

with Ac = Ac(rc) and AR = A(r) − Ac(rc). Thus
we have

1

2M
(P − eA(r))

2
Ψ(r − rc(t)) =

1

2M
((−i∇R − eAR)− eAc)

2
Ψ(r − rc(t)) =

1

2M
e iS{(∇cS − eAc)

2 + (− i∇R − eAR)
2

+2(∇cS − eAc) · (− i∇R − eAR)

+(− i∇2
cS + ie∇c ·Ac)}Φ(r − rc(t)), (44)

where r = rc + R, ∇c = ∂
∂rc

and ∇R = ∂
∂R . On the

other hand, one �nds

i
∂Ψ

∂t
= e iS

(
−∂S
∂t

+ i
∂

∂t

)
Φ(r − rc(t)) =

e iS
(
−∂S
∂t
− i ṙc · ∇R

)
Φ(r − rc(t)). (45)

Inserting Eqs. (44) and (45) into Eq. (2) and using
Eqs. (39)�(41), we �nd[
− dξ

dt
− 3

2
M ṙ2c −Mrc · r̈c − eṙc ·Ac − erc · Ȧc

− 1

2M
(− i∇R − eA(R))2 + eṙc ·AR

]
Φ = 0. (46)

Determining the function ξ by

dξ

dt
+

3

2
M ṙ2c +Mrc · r̈c + eṙc ·Ac

+erc · Ȧc − eṙc ·AR = −E, (47)

we have
1

2M
(− i∇R−eAR)

2Φ(r−rc(t))=EΦ(r−rc(t)), (48)

which has the same form as Eq. (10). However, Eq. (48)
includes the motion of center of mass as the know how a
quantum process comes about.

Similarly to Eq. (12), under the Landau gauge with
ARx

= −B(y − y0(t)) and ARy
= ARz

= 0, the solution
of Eq. (48) is given by
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Φk(r − rc(t)) =

Ak exp

(
i(Px(x−xc)+Pz(z−zc))−

(y−yc−yp)2

2l2B

)
×Hk

(
y − yc − yp

lB

)
, (49)

where Ak is normalization factor.
Under the symmetric gauge with ARx

= 1
2B(y−yc(t)),

ARy
= − 1

2B(x − xc(t)) and ARz
= 0, similarly to

Eq. (20), the solution of Eq. (49) is expressed as

Φn,m(r − rc(t)) = Nn,m(b+)m(a+)n e−|η−ηc(t)|
2

, (50)

where Nn,m is a normalization constant.
In constant magnetic �eld A = r×B, the determining

function ξ can be expressed by

dξ

dt
+

3

2
M ṙ2c +Mrc · r̈c = −E, (51)

which is independent of the potential A.
Integrating to Eq. (49), we have

ξ(t) = −Et− 3M

2

∫ t

0

ṙ2c (t
′)dt′

−M
∫ t

0

rc(t
′) · r̈c(t′)dt′. (52)

The center of mass coordinate can be obtained by the
Lorentz Eq. (37), we �nd

xc(t) =
v0x
ω

sinωt+
v0y
ω

(1− cosωt) + xc(0), (53)

yc(t) = −
v0x
ω

(1− cosωt) +
v0y
ω

sinωt+ yc(0), (54)

zc(t) = 0, (55)

where xc(0), yc(0), v0x and v0y are constants determined
by the initial conditions. Equations (53)�(55) are indeed
cyclic motion with the cyclicity T = 2π/ω. Thus we
successfully explain that the orbit of oscillator center for
the Landau level is circle.
From Eqs. (2) and (49), the state vectors Φ(r −

rc(t)) = exp (iS(rc(t)))Ψ(r − rc(t)) satis�es exactly
the Schrödinger equation. However, it points in very
nice fashion the important role played by a dynamic
phase S(rc(t)) determining the evolving track of motion
in quantum mechanics. Especially, the time-dependent
probability amplitude |Ψ(r − rc(t))|2 makes one to un-
derstand intuitively and imaginatively how quantum pro-
cess may actually come about just like the Bohm the-
ory. In principle our results are more general, reaching
beyond the standard quantum mechanics in which the
time-dependent wave functions are totally neglected.
Under the situation of ∇c×Ac = Bc = 0 with Ac 6= 0

we see from Eqs. (41), (47) and (52) that the additional
phase S(rc) in Eq. (42) would not disappear. The result
can successfully explain the Aharonov�Bohm e�ect [27]
in which predicts the production of a relative phase shift
between two electron beams enclosing a magnetic �ux
even if they do not touch the magnetic �ux.

7. Discussions and conclusions

In summary, the proposed approach gives new picture
of quantum mechanics, leading to more natural scenario
than the standard one based on abstract and subjective
concepts, where the quantum state vector obeying the
Schrödinger equation includes the center motion of phys-
ical system in terms of the classical mechanics. The re-
sults show that the wave functions are time-dependent as
well as the probability amplitudes, which is just needed
for the observable.
In conventional quantum mechanics, the motion track

of concepts is lost. The state vectors are only a property
of a statistical ensemble of similarly prepared systems
and tells nothing about the time evolution properties of
individual physical systems obeying the probability inter-
pretation. In terms of the Ehrenfest theorem, the time
derivative of the expectation value for a quantum me-
chanical observable is connected to classical mechanics.
Di�erently from the Ehrenfest theorem [28], we seek for
direct connection of the classical theory with quantum
mechanics by introducing the center motion of quantum
wave packet satis�ed the classical rule. Our approach
may o�er an appropriate tool to overcome such an inter-
mediate gap. The results are important to better learn
and understand the physics behind microscopic particle.
Thus the trajectory concept is consistently introduced
into the quantum mechanics scenarios. It is necessary to
emphasize that our approach is di�erent from the Bohm
theory and the hidden variables are not needed.
Such a uni�ed description of both the standard quan-

tum theory for microscopic objects and the classical be-
havior for macroscopic objects is similar to the GRW
theory [29]. In the GRW theory a modi�ed quantum dy-
namics with the trajectory concept was constructed by
introducing a stochastic term corresponding to a localiza-
tion in the dynamical equation and the wave-packet re-
duction with de�nite �nal pointer position was deduced.
Thus the occurrence of linear superposition of quantum
states localized in far-away spatial regions are naturally
suppressed inducing an evolution consisted with classical
mechanics. In our approach, such stochastic variable is
not necessary in the wave-packet dynamics.
These results were applied to analyze the Landau level.

We �nd that quantum electron in constant magnetic
�eld has stationary state. Wave function with additional
phase factor is satisfying a classical guidance formula in
quantum mechanics. The orbit of oscillator center deter-
mined by the Lorentz equation is naturally a circle.
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