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The E�ect of Field Changing on Two Qubit Entanglement

with Di�erent Criteria
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We investigate the e�ect of �eld changing on two qubit entanglement. We choose the coherent state, the
cat state and the squeezed state as di�erent states of interacting �eld with atom. The correlation between two
qubits can be degraded by environmental noise, this phenomenon has been labelled sudden death of entanglement.
The double Jaynes�Cummings model as a solvable model is used for describing the dynamic of sudden death
of entanglement. We measure two-qubit entanglement using the concurrence and the negativity. The Fisher
information is introduced, too, and compares results with previous entanglement measures. Finally we conclude
that the Fisher information is not an entanglement measure.
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1. Introduction

Quantum entanglement plays an important role in
many quantum information and quantum computation
tasks [1�7]. Recently, the Jaynes�Cummings model
(JCM) has been noticed, JCM describes the interaction
between a single-mode quantized �eld and a single two-
level atom [8]. On the other hand, since the quantum sys-
tem interacts with background or environment, we expect
that its entanglement falls. It has been shown that en-
tanglement can vanish to zero suddenly in a �nite time,
this phenomenon is called entanglement sudden death
(ESD) [9�17]. Qian and Eberly showed that the rules
restricting the occurrence and timing of ESD, depend on
only three parameters: initial purity, entanglement and
excitation so that knowledge or control of initial phases is
not needed [18]. Yönaç and Eberly showed that error cor-
rection a�ects entanglement and �delity di�erently, and
also entangled states for which error correction increases
�delity but decreases entanglement, and vice versa [19].
Hoang showed geometric invariants provide useful infor-
mation about di�erent types of entanglement based on
double JCM [20]. Zhang and Xie showed that the larger
the decay coe�cient is the more quickly the entangle-
ment between two atoms in a JCM decays [21]. Oliveira
et al. showed that whenever entanglement sudden death
occurs in one of the partitions residual entanglement will
appear [22]. E�ect of light squeezing on the entangle-
ment dynamics in JCM was investigated by Subeesh et al.
They concluded that the atom has a tendency to get dis-
entangled from �eld within the collapse region and also
in the revival region, for mild squeezing [23].
In this paper, we investigate ESD of two two-level

atoms. At �rst, we select the coherent state as an in-
teracting �eld with qubit and measure two-qubit entan-
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glement using concurrence and negativity. On the other
hand, quantum Fisher information is used for studying
some properties of quantum states. Although some au-
thors have introduced the quantum Fisher information
as a parameter of entanglement, it is not clear that this
function can detect the quantum behaviour.
Thereafter we change interacting �eld from coherent

state to the cat state and repeat the measurements of en-
tanglement using introduced criteria. Finally we choose
the squeezed state and measure the qubit entanglement.
We have selected the double JCM consisting of two two-
level atoms. Each one is interacting with its cavity mode
and has a ground state |g〉 and an excited state |e〉. Each
�eld (cavity mode) is supposed to be exactly resonant.
Each cavity-atom is completely isolated from the other
atom and cavity. The double Jaynes�Cummings Hamil-
tonian for our system can be written as

HTot = ωσAz + ωσbz + g(a†σA− + aσA+)

+g(a†σB− + aσB+) + νa†a+ νb†b, (1)

where ω is the atomic transition frequency; ν is the fre-
quency of the cavity �eld (ω = ν resonance); g is the
atom-�eld coupling constant; a(b) and a†(b†) are the
�eld annihilation and creation operators; and σ± are the
atomic �spin-�ip� operators.

2. Time evolution of the system

In Fig. 1 for a partially entangled atomic pure state
that is a combination of the Bell states we consider two
di�erent atomic initial states as follows:

|ψa(0)〉 = cos(β)|eg〉+ sin(β)|ge〉, (2)

|ψa(0)〉 = cos(β)|ee〉+ sin(β)|gg〉, (3)

where |ψa(0)〉 = |ψatom(0)〉. First o�, we assume that
the �eld is initially in coherent state |ψF(0)〉 = |α〉 =

e− |α|
2

2

∑
n
αn
√
n!
|n〉, α =

√
n̄e iη (we take η = 0). In the

following we choose a cat state for �eld as |ψF(0)〉 =

|c〉 = N(|α〉 + e iϕ| − α〉, N =
√

(2 + 2e−2α2 cos(ϕ))

(663)
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(we take φ = 0) [24]. The last election for �eld is
the squeezed coherent state, |ψF(0)〉 = |s〉 = s(λ)|α〉,
where s(λ) is the single mode squeezing operator given
by s(λ) = exp

(
1
2 (λ∗a2 − λa†2)

)
, λ is a squeezing parame-

ter λ = re iθ (we take θ = 0) [24]. Under these conditions
we can consider six initial states for system in Fig. 1 and
then investigate the time evolution of qubit entanglement
for six initial wave function of the total system that are
given by

|ψ1(0)〉 = cos(β)|eg αα〉+ sin(β)|ge αα〉, (4)

|ψ2(0)〉 = cos(β)|ee αα〉+ sin(β)|gg αα〉, (5)

|ψ3(0)〉 = cos(β)|eg cc〉+ sin(β)|ge cc〉, (6)

|ψ4(0)〉 = cos(β)|ee cc〉+ sin(β)|gg cc〉, (7)

|ψ5(0)〉 = cos(β)|eg ss〉+ sin(β)|ge ss〉, (8)

|ψ6(0)〉 = cos(β)|ee ss〉+ sin(β)|gg ss〉, (9)

where the �rst and second indexes denote the state of
qubit atomic and the others introduce the �elds. It can
be shown that the wave function of the total system |ψ(t)〉
under the Hamiltonian (1) evolves in the standard way
and take a doubly in�nite series summation as

|ψ(t)〉 =
∑
n,m

[an,m(t)|ee n,m〉+ bn,m(t)|eg n,m〉

+cn,m(t)|ge n,m〉+ dn,m(t)|gg n,m〉]. (10)

After using the Schrödinger equation for the initial
state (4), we get the coe�cients as

an,m(t) =

− iA

(
α√
m+ 1

cos(β)C1nS1m +
α√
n+ 1

sin(β)S1nC1m

)
,

bn,m(t)=A

(
cos(β)C1nC0m−

√
m√

n+ 1
sin(β)S1nS0m

)
,

cn,m(t)=A

(
sin(β)C0nC1m−

√
n√

m+ 1
sin(β)S1mS0n

)
,

dn,m(t) =

− iA

(√
n

α
cos(β)C0mS0n−

√
m

α
sin(β)S0mC0n

)
, (11)

where

A = e−|α|
2 |α|n+m√

n!m!
,

C1n(m) = cos
(
gt
√
n(m) + 1

)
,

C0n(m) = cos
(
gt
√
n(m)

)
,

S1n(m) = sin
(
gt
√
n(m) + 1

)
,

S0n(m) = sin
(
gt
√
n(m)

)
.

Similarly with changing the initial state from (4) to (5)
the coe�cients convert to:

an,m(t) =

A

(
cos(β)C1nC1m −

α2√
(n+ 1)(m+ 1)

sin(β)S1nS1m

)
,

bn,m(t) =

− iA

(√
m

α
cos(β)C1nS0m +

α√
n+ 1

sin(β)S1nC0m

)
,

cn,m(t) =

− iA

(√
n

α
sin(β)S0nC1m +

√
α√

m+ 1
sin(β)S1mC0n

)
,

dn,m(t) =

A

(
−
√
nm

α2
cos(β)S0mS0n + sin(β)C0mC0n

)
. (12)

We can solve Schrödinger equation with initial state (6),
too, and calculate the coe�cients as

an,m(t) = − iA

(
α√
m+ 1

χ1nχ2m cos(β)C1nS1m

+χ1mχ2n
α√
n+ 1

sin(β)S1nC1m

)
,

bn,m(t) = A (χ1nχ1m cos(β)C1nC0m

−
√
m√

n+ 1
χ2nχ2m sin(β)S1nS0m

)
,

cn,m(t) = A (χ1nχ1m sin(β)C0nC1m

−
√
n√

m+ 1
χ2nχ2m sin(β)S1mS0n

)
,

dn,m(t) = − iA

(√
n

α
χ1mχ2n cos(β)C0mS0n

−
√
m

α
χ1nχ2m sin(β)S0mC0n

)
, (13)

where χ1n(m) = 1+(−1)n(m) and χ2n(m) = 1−(−1)n(m).
Also for the initial state (7) we have the following terms
for coe�cients:

an,m(t) = A
(
χ1nχ1m cos(β)C1nC1m

− α2√
(n+ 1)(m+ 1)

χ2nχ2m sin(β)S1nS1m

)
,

bn,m(t) = − iA

(√
m

α
χ1nχ2m cos(β)C1nS0m

+
α√
n+ 1

χ1mχ2n sin(β)S1nC0m

)
,

cn,m(t) = − iA

(√
n

α
χ1nχ2m sin(β)S0nC1m

+

√
α√

m+ 1
χ1mχ2n sin(β)S1mC0n

)
,

dn,m(t) = A

(
−
√
nm

α2
χ2nχ2m cos(β)S0mS0n

+χ1nχ1m sin(β) cos(gt
√
m) cos(gt

√
n)

)
. (14)

Similarly we obtain coe�cients for primary states (8)
and (9), these coe�cients are very long, so we avoid writ-
ing them.
All information is contained in density matrix of sys-

tem that can be obtained from wave function (10) as a
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Fig. 1. The picture of the two atoms in two cavity in-
teracting with di�erent �elds.

pure state ρ(t) = |ψ(t)〉〈ψ(t)|. Of course noting the semi-
classical nature of the coherent state �eld we expect that
its quantum qualities is not dominant, thus for measur-
ing the qubit entanglement, we will trace out over the
�eld of density matrix.

3. Concurrence

In this section we will use Wootters' concurrence [25]
as our entanglement measure which is given by

C(ρ) = max(0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4), (15)

where the quantities λi are the eigenvalues in decreasing
order of the matrix ρ̃ where

ρ̃ = ρ(σy
⊗

σy)ρ∗(σy
⊗

σy). (16)

Here ρ is our two-qubit reduced state density matrix,
ρ∗ denotes the complex conjugation of ρ in the standard
basis and σ is the Pauli matrix. Using the wave function
(10), Eq. (15) turns into

C = max(0
∑
n,m

|an,m(t)|2|dn,m(t)|2

−bn,m(t)∗cn,m(t)∗an,m(t)dn,m(t)

−an,m(t)∗dn,m(t)∗bn,m(t)cn,m(t)

+|bn,m(t)|2|cn,m(t)|2), (17)

where coe�cients (a, b, c, d) have been given in the pre-
vious section. Since in Eq. (17) there are cos(gt

√
n) and

sin(gt
√
m), we expect to see similar revival behavior here.

Figure 2 shows the time evolution of concurrence for six
di�erent initial system states, we note that the all curves
in Fig. 2 indicate repeated occurrences of early-stage de-
coherence (ESD). We see an interesting result in Fig. 2a:
the initial functions (4) and (5) create identical entan-
glement. This also applies in the case of Fig. 2b and
Fig. 2c. Figure 2b shows the concurrence changes of ini-
tial functions (6) and (7) and Fig. 2c relates to functions
(8) and (9).
Comparing Fig. 2a and Fig. 2b, we see that Fig. 2b

shows obviously more number of oscillations, this means
the e�ect of �eld changing from the coherent state to cat
state, is noticeable on the qubit entanglement, such that
in Fig. 2b decay of the qubit entanglement is smoother
than the coherent state �eld. In Fig. 2a the entanglement
falls suddenly to zero and will remain zero for a period of
time before entanglement recovers. In Fig. 2b and c the

Fig. 2. The time evolution of the concurrence for ini-
tial functions (a) (4) and (5), (b) (6) and (7),(c) (8)
and (9) with λ = 0.5.

length of the time interval for the zero entanglement is
too short, as soon as the entanglement falls, it recovers
immediately. On the other hand, in Fig. 2c the entangle-
ment is maximized �ve times (t = 0, 21, 42, 64, 86) while
in the other diagrams this maximizing occurs by four
times. According to the concurrence criterion, if the in-
teracting �eld of qubit is in the coherent state, decrease
of entanglement will occur rapidly in comparison with
the other �eld states (cat and squeezed states).

4. Negativity

The Peres�Horodecki criterion for separability [26, 27]
leads to natural computable measure of entanglement
called negativity [28]. The negativity is based on the
trace norm of the partial transposition ρT1 of the bipar-
tite mixed state ρ and measures the degree to which ρT1

fails to be positive, i.e., the absolute value of the sum

of the negative eigenvalues of ρT1 , N = ||ρT1 ||−1
2 , where

||ρT1 || denotes the trace norm of ρT1 (||ρT1 || = Tr
√
ρρ†).

Brie�y, we can write the negativity as [29]:

N = 2 max(0,−λmin), (18)

where λmin is the lowest eigenvalue of the partial trans-
position of the state ρT1 . It can be shown that using the
wave function (10), the negativity converts to

N =
∑
n,m

(an,m(t)dn,m(t) + bn,m(t)cn,m(t)). (19)

Equation (19) contains of sine and cosine terms so except
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Fig. 3. The time evolution of the negativity for initial
functions (a) (4) and (5), (b) (6) and (7), (c) (8) and (9)
with λ = 0.5.

to negativity exhibits an oscillating behavior. Figure 3
shows the behavior of the negativity with respect to time.
According to the negativity, the initial states

(4) ((6), (8)) and (5) ((7), (9)) have created identical en-
tanglement. Figure 3a related to initial states (4) and (5),
Fig. 3b to (6) and (7), Fig. 3c to initial functions (8)
and (9). Unlike Fig. 2, in all curves of Fig. 3 entangle-
ment suddenly falls and improves immediately, so that
the length of time interval for the zero entanglement is
approximately zero. Curves in Fig. 3c show more oscilla-
tions with respect to other curves. However, in compar-
ing Fig. 2 we see that negativity is a stronger indicator
than concurrence, because it could detect entanglement
where concurrence had distinguished that the system is
separable.

5. Fisher information

The Fisher information (FI) was devised by Fisher [30]
and has recently been used as a parameter of entangle-
ment [31�33]. The atomic Fisher information FI is de-
�ned as [32]:

FI =

2∑
j=1

∫ 2π

0

∫ π

0

QA(θ, ϕ, t)

(
σj
∂ lnQA(θ, ϕ, t)

∂ϑj

)2

× sin(θ)dθdϕ, (20)

where (ϑ1, ϑ2) = (θ, ϕ), σ2
j = 〈ϑ2j 〉−〈ϑj〉2 and QA(θ, ϕ, t)

is the atomic Q-function given by QA(θ, ϕ, t) =
1
2π 〈θ, ϕ|ρA(t)|θ, ϕ〉, |θ, ϕ〉 is the atomic coherent state

that for two-level atom is written as |θ, ϕ〉 = cos
(
θ
2

)
|e〉+

sin
(
θ
2

)
exp(iϕ)|g〉. By selecting the same parameters for

the atomic coherent states of both systems in Fig. 1 as
(θA = θB and ϕA = ϕB = 0) the atomic coherent state
of two qubit can be written as:

|θ, ϕ〉 = cos2
(
θ

2

)
|ee〉+

1

2
sin(θ)|eg〉+

1

2
sin(θ)|ge〉

+ sin2(
θ

2
)|gg〉. (21)

Now using Eq. (21) and the wave function (10) we can
obtain the following formula for Q-function of qubit
at t > 0:

Q(t) =
∑
n,m

(
cos(

θ

2
)4|an,m(t)|2 (22)

+
1

2
sin(θ)

[
cos

(
θ

2

)2

(an,m(t)bn,m(t)∗ + bn,m(t)an,m(t)∗

+an,m(t)cn,m(t)∗ + cn,m(t)an,m(t)∗)

+ sin(t)2(dn,m(t)cn,m(t)∗ + cn,m(t)dn,m(t)∗)

1

2
(an,m(t)dn,m(t)∗ + dn,m(t)an,m(t)∗)

]
+

1

4
sin(t)2[|bn,m(t) + cn,m(t)|2] + sin

(
θ

2

)4

|dn,m(t)|2
)
.

We can also calculate σ2
θ as σ2

θ = 〈θ2〉 − 〈θ〉2, where

〈θ〉 =

∫ π

0

〈θ, φ = 0|ψ(t)〉〈ψ(t)|θ, φ =

0〉θ sin(θ)dθ = 2π

∫ π

0

Q(t)θ sin(θ)dθ.

For a simple case in Eq. (20) we take (ϕ = 0) so σ2
θ can

be written as

σ2
θ = 2π

∫ π

0

Q(t)θ2 sin(θ)dθ

−
[
2π

∫ π

0

Q(t)θ sin(θ)dθ

]2
. (23)

Using Eqs. (22) and (23) we can calculate integral in
Eq. (20). Figure 4 shows the Fisher information as a
function of time. Figure 4a is related to functions (4)
and (5), Fig. 4b to (6) and (7), Fig. 4c to (8) and (9).
In Fig. 4a in some time durations entanglement is zero
or system is separable, the length of these periods de-
creases with respect to time. For example the �rst time
duration whose FI is zero, is between t = 3 and t = 25,
second duration is (t = 40�55) and next period (t = 72�
83) shows weak oscillations while the negativity and the
concurrence (Figs. 2a and 3a) do not show this. We note
that Fig. 4 shows curves with more oscillations than con-
currence and negativity.

The curves appearance in Fig. 4b is not similar to that
of Figs. 2b and 3b but their behavior is similar and the
local maxima and minima have approximately the same
feature. Of course, in Fig. 4b again the length of periods
that system is separable reduces in far times. In Fig. 4c
one can see that when the qubit interacting �eld is in
squeezed state, the ESD phenomenon happens smoothly.
Figure 5 shows our results for FI at far times (gt < 100),
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Fig. 4. The time evolution of the Fisher information
for initial functions (a) (4) and (5), (b) (6) and (7),
(c) (8) and (9) with λ = 0.5.

Fig. 5. The diagram of Fisher information in t < 100.

we note that unlike concurrence and negativity the FI
curves show small and weak oscillations at far times.
In the other words, according to FI curves, two qubit en-
tanglement do not die completely at far times but qubit
is weakly entangled. Also qubit entanglement is strong if
the interacting �eld changes from coherent state �eld to
the squeezed state or the cat state.
The interesting observation here is that with increasing

squeezing parameter λ, the ESD phenomenon does not
happen for squeezed light but the qubit entanglement
exhibits only a revival behavior (Fig. 6), so that the qubit
entanglement falls abruptly and recover immediately and
retains this behavior constantly. On the other words,
the e�ect of squeezing light on two qubit entanglement
is that in contrast the coherent �eld, the entanglement
retains its revival (oscillating) behavior permanently and
never dies completely. When we look at the curves of
concurrence, negativity and Fisher information, we note
that the Fisher information curves show more number of
oscillations than curves of concurrence and negativity.

Fig. 6. The negativity and Fisher information for ini-
tial function (8) with λ = 1.

6. Conclusion

In summary, we have investigated ESD phenomenon
of two qubits with three di�erent states of �eld, co-
herent state, cat state and squeezed state. We showed
that for all three states of �eld, the entanglement ex-
hibits damping oscillator behavior so that the entangle-
ment occurrences are periodic in time but are not pe-
riodic in amplitude. We noted that if �eld is in the
cat state or in the squeezed state, two-qubit entangle-
ment decays slowly. The interesting observation here is
that with increasing squeezing parameter λ, the entangle-
ment falls suddenly and recovers immediately and retains
its collapse-revival behavior permanently and never dies
completely, this property is absent for the coherent state
and the cat state of �eld. So, not only the in�nite range
of photon numbers e�ects on decoherence of system [12],
but also with changing the nature of �eld we can con-
trol ESD. With selecting the coherent state as �eld, the
entanglement deteriorates in �nite time, with changing
�eld to cat state this deterioration will happen slowly
while the collapse-revival behavior events with more os-
cillation and entanglement of system maintains in more
time durations than coherent state. We noted that in
the squeezed state �eld case (for large squeezing param-
eter λ), the entanglement maintains its collapse-revival
behavior forever (Fig. 7). In Fig. 8 we compare the con-
currence and Fisher information for initial function (4).
Another point is that the evolution of entanglement de-
gree depends on the initial atomic state of the system,
for initial atomic state (2) more degree entanglement has
reported than initial atomic state (3). In this paper, we
used concurrence and negativity as entanglement mea-
sures. By comparing the results of concurrence and neg-
ativity as entanglement measures with quantum Fisher
information it has been shown that FI is not a good en-
tanglement measure.
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Fig. 7. Comparison between the negativity and Fisher
information for initial function (6).

Fig. 8. Comparison between the concurrence and
Fisher information for initial function (4).
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