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The Belief Propagation algorithm is a popular technique of solving inference problems for different graph-like
structures. We present a discussion of the dynamics of that algorithm for the Ising model on the square lattice.
Our main goal was to describe limit fixed points for that algorithm, which are strictly connected with the marginal
probabilities and stationary points of the Bethe Free Energy. Analytical considerations provide an exact analysis
of a class of symmetrical points while numerical simulations confirm that for small lattices there are no non-
symmetrical points. Notwithstanding the prevalent use of the Belief Propagation as an inference tool we present a
sociophysical interpretation of its dynamics. In that case our considerations may be viewed as an investigation of
the possible fixed points of the social dynamics.
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1. Introduction

The Belief Propagation Algorithm was originally pro-
posed by Judea Pearl in 1982 [1]. It was introduced as an
inference technique for the Bayesian trees. Pearl prove
that for a graph without cycles the algorithm always con-
verges to its fixed point, and at this fixed point beliefs
are equal to marginal probabilities. Pearl’s paper started
a new direction of research in the statistics and computer
science — belief propagation was changed, improved and
prepared for different applications (e.g. decoding, com-
puter vision problems and Bayesian networks [2]). Some
vision problems, as well as some problems of combinato-
rial optimalisation may be connected to the application
of BP algorithm to Markov Random Fields related to
the Gibbs distribution for the Ising model on the square
lattice [2–4]. The Ising model was very intensively in-
vestigated in statistical physics [5]. Although the main
goal of our work is the description of the dynamics of
BP algorithm, not the inferring of the properties of the
Ising model, we use some well known results for the Ising
model as a benchmarks of our calculations. The most
important results for our considerations are those con-
nected with the so-called Bethe approximation i.e. solu-
tion of the Ising model on the Bethe lattice instead of the
standard two-dimensional lattice [6]. It can be shown [2]
that the BP algorithm minimizes the Bethe Free Energy
i.e. Bethe’s approximation of the Gibbs Free Energy.
However, unfortunately, for the square lattice there is
no global description of the dynamics of BP. The sim-
plest tree case was solved by Pearl [1], but, as he write
“if we ignore the existence of loops and permit the nodes
to continue communicating with each other as if the
network were singly connected, messages may circulate
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indefinitely around these loops, and the process may not
converge to a stable equilibrium” [2, 7].

The Ising model is also an inspiration for the many
sociophysical models [8]. In fact, the BP Algorithm may
be interpreted as one of many models describing social
dynamics (or opinion dynamics), which is a fast growing
branch of science straddling physics, mathematics and
sociology [9–15].

Of course beliefs in the BP fixed points have well
known physical interpretation (i.e. they are marginal dis-
tribution for the Gibbs distribution in the Bethe ap-
proximation), although there is no exact results about
messages in the BP dynamics for the Ising model. One
can calculate beliefs with knowing messages, but differ-
ent sets of messages may cause with the same value of the
beliefs. Our work presents such a results and use above
interpretation of the beliefs in the fixed points as an il-
lustration of the BP approach.

Moreover, Belief Propagation for the Ising model was
also recently intensively investigated from the statistical
physics point of view [16–18], but even despite important
results about conditions of convergence and its attraction
basins [19] the literature lacks a complete analysis of the
dynamics of BP for Ising model for the square lattice.
Our paper contributes by considering one of class of fixed
points — symmetrical ones.

The article is organised as follows — in Sec. 2 we spec-
ify what we mean by the Belief Propagation Algorithm.
This sections establishes the terminology. Our main re-
sults are demonstrated in Sec. 3 in which we present dis-
cussion about the dynamics of the messages in the BP
Algorithm. It is well known [2], that every fixed point
of the BP algorithm is a stationary point of the Bethe
Free Energy. This gives a natural, and well known in the
literature, interpretation of the beliefs as the probability
distribution for the Bethe’s approximation of the Ising
model. On the other hand, to the best of our knowledge
there are no results concerning the number or stablity of
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fixed points of the message passing, and one can imagine
that the beliefs obtained from the BP algorithm may de-
pend on initial messages. Our results establish that there
are only two cases — first of them (symmetrical matri-
ces of messages) is somehow typical, and we solve this
case exactly. This insight into the BP dynamics allows
one to better understand what is BP for the Ising model
and may help in further improvement of this algorithm
for the Ising model or one of many other applications.
Furthermore we claim some hypothesis about the non-
symmetrical case and confirm our results by numerical
simulations — presented in Sec. 4.

2. Belief Propagation Algorithm
for the Ising model

Let us consider the standard Ising model on the N×N
square lattice with periodic boundary conditions. For
such a model one can write the Hamiltonian as
H(σ, J, h) = −

∑
i

∑
j∈N (i)

Jσiσj −
∑
i

hσi, (1)

where every spin can take two values σi = ±1, i =
1, . . . , N2, h is an external magnetic field and J cor-
responds to the energy of interaction between nearest
neighbours in the square lattice. By N (i) we mean the
set of the four nearest neighbours of the node i in the
lattice. With the Hamiltonian given by Eq. (1) one can
obtain the partition function

Z(J, h, β) =
∑

σ∈{−1, 1}N2

exp (−βH(σ, J, h)) , (2)

where β = 1
kBT

. In the further discussion, for brevity
we will use only β and call this parameter temperature.
Partition function defines the Gibbs distribution on spin
configurations — it is simply the probability from the
canonical distribution

Pβ(σ) =
exp (−βH(σ, J, h))

Z(J, h, β)
=

1

Z

∏
i, j∈Ni

exp (βJσiσj)
∏
i

exp (βhσi) , (3)

where the first product takes place over all pairs of nodes
which are connected and the second one over all nodes in
the lattice.

As it was mentioned in Sect. 1, the Belief Propagation
Algorithm may be used for finding marginal distributions
for a very large class of mathematical models. Common
for every class are graph-like structures. In our case, the
proper structure is a Random Markov Field (for more
details see [4]) which is related to the Gibbs distribution
given with Eq. (3). The BP algorithm allows one to infer
the marginal distribution for a given Random Markov
Field i.e. find the Gibbs distribution for the given Ising
model in the Bethe approximation [2, 18].

The main idea which is behind the BP algorithm is in
fact translating the problem of finding marginal probabil-
ities to the sociophysical model in which every node has
opinion about some problem e.g. political view. Every
node feels the impact of the external world (e.g. news-
papers, television, gossip), which is modelled with the

external field h. Furthermore, every node interacts with
its neighbours via the coupling J , which means that, for
the ferromagnetic case the system prefers nodes which
are in agreement. This may be explained as conformism
of the modelled population. The most important step in
the description of the sociophysical face of the BP algo-
rithm is an introduction of the abstract quantities µij ,
i, j = 1, . . . N2 which are called messages. They may be
interpreted as information sent from node j to its neigh-
bour i about node j’s opinion about the node i’s opin-
ion. It is worth noticing that in that opinion dynam-
ics there are two different mechanisms of interactions.
The first of them is more static, connected with the natu-
ral (non-)conformism of every node and described with J .
The other is concerned with how the message passing
represents the impact of one agent on its neighbours.
A scheme of this message sending process is presented
in Fig. 1. Based on above-mentioned phenomena (exter-
nal impact, interactions between nodes and message ex-
change) every node establishes its own beliefs. There are
also so-called two-beliefs, which describe pairwise cor-
relations and play a crucial role in the calculus of the
BP updating rule. One can repeat this procedure — i.e.
allow nodes to change their messages and interact and
change the values of the beliefs. If this procedure con-
verges, beliefs are equal to the marginal probabilities.

Fig. 1. Scheme of the propagation of messages in the
BP algorithm.

Let µ = [µij ] ∈ MN2×N2

(R) be the matrix of mes-
sages. In general one can not assume that µ is symmetri-
cal, hence µij 6= µji. There are also no a priori boundary
values of the messages. Based on the Hamiltonian given
by Eq. (1) we introduce beliefs

bij(σi, σj) = kij exp (β (hσi + hσj + Jσiσj

+σi
∑

n∈Ni, n6=j

µin + σj
∑

n∈Nj , n6=i

µjn

 ,

bi(σi) = ki exp

(
β

(
hσi + σi

∑
n∈Ni

µin

))
,

where kij and ki are normalisation constants. If the iter-
ations reach the fixed point and beliefs are equal to the
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Gibbs distribution, one can calculate the magnetisation
as follows

χi = bi(1)− bi(−1) = tanh

(
βh+ β

∑
n∈Ni

µin

)
. (4)

We assume that in the limit marginalisation condi-
tion [2] will be satisfied

bi(σi) =
∑
sj

bij(σi, σj). (5)

This condition is natural — we expect that system is
described with the one-beliefs and two-beliefs, so this de-
scriptions must be equivalent. Marginalisation condition
in Eq. (5) may be used for the derivation of the updating
rule of the Belief Propagation Algorithm. For that pur-
pose let us divide Eq. (5) for σi = ±1

bi(1)

bi(−1)
=

∑
σj
bij(1, σj)∑

σj
bij(−1, σj)

⇒ eβµij

e−βµij
=

∑
σj

exp

(
β

(
hσj + Jσj + σj

∑
n∈Nj , n6=i

µjn

))
∑
σj

exp

(
β

(
hσj − Jσj + σj

∑
n∈Nj , n6=i

µjn

)) , (6)

where we use the definitions of bi and bij . From the
assumption that beliefs in the stationary point of the
BP algorithm must satisfy the marginalisation condition
one can observe that following function has this property
(compare with Eq. (6))

µ′ij =
1

2β
ln

cosh

(
β

(
h+ J +

∑
n∈Nj , n 6=i

µjn

))

cosh

(
β

(
h− J +

∑
n∈Nj , n 6=i

µjn

)) . (7)

Which means that from the dynamical point of view,
the BP algorithm is a problem of iteration of the func-
tion (7) parametrised with the three parameters h, J
and β over the space of matrices [µij ]. Because of the
construction of the BP algorithm the key features of the
dynamics are the existence and uniqueness of the limit
points. We present an analytical discussion about limit
points of the BP in Sect. 3 and some numerical results in
Sect. 4. Our main object of interest are limit points of it-
erations of BP and such fixed points have to be attracting
or at least saddles.

3. General results
Let us consider a fixed point of the BP algorithm µ,

i.e. [µij ] = [µ′ij ] according to Eq. (7). Furthermore we
assume that µ is a symmetric matrix (see Fig. 2). As we
will show in this section, the class of symmetrical so-
lutions can be exactly studied and has a natural phys-
ical interpretation. In Sect. 4 we present numerical ex-
amples which suggest that, for small lattices we tested
there were no non-symmetrical limit points. Nonetheless
such non-physical solutions exist in higher dimensional
problems [20], which is a meaningful drawback of the BP
algorithm as a inferring method.

Fig. 2. Visualisation of the one of the fixed points of
the BP algorithm for 5× 5 lattice. The matrix is sym-
metrical. Every black square represents the same value
of µ = 0.588 (β = 0.4 > βbif , h = 0, J = 1) and white
squares denote zeros. It is worth noticing that because
of the fact that [µij ] describes messages between every
node its size is N2 ×N2, in this case 25× 25.

Let us consider the update formula for the BP algo-
rithm from Eq. (7)

µ′ij =
1

2β
ln

cosh (β (h+ J + θj − µji))
cosh (β (h− J + θj − µji))

=

1

2β
ln

cosh
(
β
(
h̃+ J − µij

))
cosh

(
β
(
h̃− J − µij

)) ,
where θj =

∑
n∈Nj

µjn is the sum of messages coming out

from node j. With the substitution h̃j = h+ θj and the
symmetricity of [µij ] one can obtain that BP dynamic for
µij is equivalent to the dynamics of the following function

hβ, h, J(x) =
1

2β
ln

cosh (β (h+ J − x))
cosh (β (h− J − x))

,

where h = h̃j and x = µij . The derivative of hβ, h, J(x)
satisfies the condition |dhβ, h, J(x)/dx| < 1 which means
that hβ, h, J(x) has exactly one fixed point. From the fact
that this fixed point depends only on J , β, and h̃j one
can infer that for every neighbour of node j, limit point’s
messages are equal µkj = µk′j for k, k′ ∈ N (j). This
observation with the assumptions of µ being symmetric
leads to the conclusion that all non-zero messages are
equal and satisfy a fixed point condition for the following
fβ function

fβ(µ) =
1

2β
ln

cosh (β (h+ J + 3µ))

cosh (β (h− J + 3µ))
, (8)

where we ignore h and J in the index for brevity. With
the substitutions A = e2βh, B = e2βJ , z = e2βµ one
can simplify the equation of the fixed point of fβ from
Eq. (8) to

Az4 −ABz3 +Bz − 1 = 0, (9)
with conditions A, B, z > 0. Eq. (9) provides limitations
on the number of different fixed point of BP algorithm
for the given values of parameters (β, h and J) — there
are at most four such solutions. Eq. (9) may be seen as
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a solution of the problem — one can solve this algebraic
equation (e.g. in Wolfram Mathematica) and find possi-
ble values of fixed points of BP algorithm. We skip this
calculation, as a technical one and present above discus-
sion about properties of those limit points. We split this
into two parts — ferromagnetic (J > 0) and antiferro-
magnetic (J < 0).

Firstly, let us assume that J > 0 and h = 0, which
means, that fβ is a monotone increasing function. For
sufficiently small values of β one can see that there is
only one stable fixed point x = 0. This situation changes
at the bifurcation point, where x = 0 becomes unstable,
which means that

dfβ(x)

dx
=

3

2
(tanh (β(h+ J + 3x))

− tanh (β(h− J + 3x))) ,

satisfies the condition dfβ/dx|x=0 = 1, which corresponds
to the following value of bifurcation temperature

βbif =
artgh( 13 )

J
=

ln 2

2J
. (10)

For β < βbif there is only one stable fixed point at x = 0
and for β > βbif two stable fixed points while x = 0 has
lost stability, but is still a fixed point. There were no
another bifurcations, which one can infer from the plot
of function fβ , which is presented in Fig. 3.

Fig. 3. Plots of functions fβ (left, see Eq. (8)) and f∞
(right, see Eq. (11)). On the left plot every curve is
the plot of function for h = 0 and β = 0.3 < βbif ,
J = 1 (black solid), β = 0.8 > βbif , J = 1 (gray solid),
β = 0.8, J = −1 (black dotted). On the right plot every
curve is drawn for J = 1, the grey solid line corresponds
to h = 2.5 and the black solid line to h = −1.5.

Introduction of a non-zero external field h 6= 0 does not
change the dynamic dramatically, but for the brevity we
describe temperature of bifurcation at zero external field
as βbif and for non-zero field βb. For sufficiently small
values of |h| there is no change in the dynamic — below
the bifurcation point (in that case βb is higher for βbif
given by Eq. (10)) there is only one fixed point x = −h/3
and for higher temperatures two stable and one unstable
points appear. Sufficiently large external field destroys
the bifurcation — for that situation there is only one
fixed point for every values of β. Those observations may
be proven as follows — let us consider f∞, which is the
limit as β →∞ of Eq. (8)

f∞(x)=

{
h+3x x ∈

(
− 1

3 (J+h),
1
3 (J−h)

)
,

J sgn(x) otherwise.
(11)

fβ(x) converges monotonically to f∞(x) for every x, so
if any bifurcation occurs we may observe more than one
fixed point of f∞. The analysis of the graph (Fig. 3) of
function f∞ convinces one that the necessary and suffi-
cient condition for the bifurcation to occur is |h| < 2J .
For a stronger external field there is no bifurcation and
there is only one stable fixed point.

The antiferromagnetic case (J < 0) situation is much
easier for description. Firstly, let us notice that the
change of the sign of J causes changes of sign in fβ(x),
which can be easy deduce from Eq. (8). It implies that for
the antiferromagnetic case the function fβ is monotoni-
cally decreasing, which means that there is exactly one
stable fixed point below the bifurcation point. For the
temperature above the bifurcation the situation strongly
depends on the value of external field. What is surprising
— the role of external field is opposite than in ferromag-
netic case. For higher values of |h| there is exactly one
stable point, but for |h| < 2J there is no fixed point —
the dynamics leads to stable orbits of order 2, but these
are unacceptable for the BP algorithm, as it was men-
tioned in Sect. 1.

This discussion, which is shortly presented in Table
may be summed up as follows: if one considers only sym-
metrical fixed points of the BP algorithm, then there are
exact constrains for the number of stable fixed points,
which depends on sign of values of β, h and J . The bi-
furcation, if it occurs, results in two new stable points in
the place of one for smaller values of β (J > 0), or the
fixed point vanishing (J < 0). Of course the vanishing
does not mean that there is no fixed point of BP — there
are only no symmetrical ones.

TABLE

The number of symmetrical fixed points of BP,
βb denotes bifurcation temperature for the non-zero
external field, for h = 0, βb = βbif (see Eq. (10)).

|h| < 2J |h| > 2J

β < βb 1ferro 1anti 1ferro 1anti
β > βb 2ferro 0anti 1ferro 1anti

4. Numerical simulations

We investigate numerically BP algorithm on the N×N
lattices, where N 6 10. For those lattices the only fixed
points into which BP algorithm converge were symmet-
rical matrices, which means that results from Sect. 3 are
applicable. In Fig. 2 we present a visualisation of the ma-
trix, which was the fixed point of BP, and as it can be
seen — it is a symmetrical matrix. Of course sometimes
the BP algorithm gets stuck in a periodic orbit and in
that situation we repeat our computations.

The next step in our numerical simulation was check-
ing the correctness of magnetisations calculated from the
BP algorithm. BP converges to its fixed point, which
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allows us to calculate beliefs from Eq. (5) and, finally,
the magnetisations (4). We compare this simulation re-
sults with well known calculations of magnetisation for
Bethe lattices [6]. As is presented in Fig. 4, there is a
perfect correspondence between numerical and analyti-
cal results.

Fig. 4. Comparison between BP results (dots from
simulations and Eq. (4)) and Bethe approximation
(solid line, for details see [6]) for the magnetisation.
We assume that J = 1 and h = 0. Note that βbif
from Eq. (10) is equal to the critical temperature for
the Bethe approximation.

Fig. 5. Obtained simulations scenarios. No (left) or
one (right) bifurcation.

The last numerical test was the examination of the
phase space of BP. We run the algorithm for the random
values of the external field and J = 1 and count differ-
ent fixed points. The plot of the number of such points
versus β is presented in Fig. 5. As one can see there are
only two scenarios — one includes a single bifurcation
in which one fixed point changes into two different fixed
points. The second of them shows no bifurcation — for
every value of β there is always one stationary stable
point.

5. Concluding remarks

We present exact, analytical discussion of the dynam-
ics of the BP algorithm converging to a symmetrical fixed
point. Numerical simulations suggest that for lattices we
considered such fixed points are the only ones possible.
Notably for larger lattices there exist non-symmetrical
fixed points [20]. Notwithstanding the application of the
BP algorithm for solving graphical models, one can see

that algorithm as a sociophysical model of opinion dy-
namic. From that point of view we have investigated of
properties of a global compromise state.
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