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The article presents independent component analysis (ICA) applied to the concept of ensemble predictors.
The use of ICA decomposition enables to extract components with particular statistical properties that can be
interpreted as destructive or constructive for the prediction. Such process can be treated as noise filtration from
multivariate observation data, in which observed data consist prediction results. As a consequence of the ICA mul-
tivariate approach, the final results are combination of the primary models, what can be interpreted as aggregation
step. The key issue of the presented method is the identification of noise components. For this purpose, a new
method for evaluating the randomness of the signals was developed. The experimental results show that presented
approach is effective for ensemble prediction taking into account different prediction criteria and even small set of
models.
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1. Introduction

In this paper we develop an independent component
analysis (ICA) approach for ensemble predictions. Its
main idea is based on decomposition of the prediction re-
sults into underlying independent components [1]. Some
of these components may be associated with the true
value prediction and some of them can be treated as
noise or interference. Elimination of noises, termed as
destructive components, should result in prediction im-
provement. The process can be perceived as data filtra-
tion aimed to reveal hidden noises in a way that is typical
for blind source separation techniques [2]. Standard fil-
tering using ICA involves the components separation into
source signals (separation step), the identification and
elimination of noise components, and then inverse proce-
dure with respect to separation (remixing step). The use
of ICA filtration for prediction problem in which the his-
torical data are available (target values) enables, while
remixing, to develop more general form of mixing system
which can be the MLP neural network.

The term ensemble or aggregation is a consequence of
the fact that the final result is a combination of individ-
ual results from different models. Combination methods
have gained more ground in the forecasting literature,
largely due to the strength of the empirical evidence sug-
gesting that these methods can perform better than al-
ternatives based on forecasts from a single model [3–6].
Unlike the other popular ensemble methods like bagging
or boosting there are no assumptions to both, the form of
aggregated models (e.g. decision trees, regression models)
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and the criteria for model assessment (e.g. mean square
error, mean absolute percentage error, misclassification
error). In other words, we can aggregate models (more
specifically, the results of their prediction) regardless to
specific criterion and the modeling technique. Another
advantage of the presented method is its effectiveness of
improving the prediction results with a relatively small
number of aggregated models.

One of main problems in this concept is proper de-
structive component identification and its transforma-
tion. In the simplest case for small number of models
we can perform full computational search with each ba-
sis component elimination and checking its impact for
final prediction. Unfortunately, in practice we can’t ex-
pect that our basis component are pure destructive or
constructive, especially taking into account limited num-
ber of models. Therefore, we should apply filtration pro-
cesses rather than elimination, which can be realized as
supervised learning.

An important and utilitarian dimension of our work
concerns its application for practical business problem
which was electricity load forecasting on Polish market.
Forecasting electricity demand is an important issue from
an economic point of view [7, 8], due to the fact that di-
rect financial incentives are related to the characteristics
of the energy market, on which the possibility to store
the electricity is very limited. Therefore, any mismatch
between the size of demand and supply results in tangible
losses. Over estimation, due the storage problems, causes
its irretrievable loss, while under estimating leads to ur-
gent purchase on balancing market on which the prices
are higher.

In this circumstances our concept delivers a reliable
tool for accurate short term forecasting on electricity
market, which is crucial for the economic efficiency of
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power sector entities, since it is associated with costly
transaction realized on balancing market.

2. Prediction results improvement

We assume that after learning various models we have
a set of prediction results. We collect particular predic-
tion results xi(k), i = 1...,m, in one multivariate vari-
able x = [x1(k), ..., xm(k)]

T . Then, we assume that pre-
diction result is a mixture of the m latent components:
constructive sj , j ∈ D1 and destructive si, j ∈ D2, where
D1∪D2 = {1, 2, ...,m}, D1∩D2 = ∅ and D1 6= ∅. Next,
we assume that the prediction result are the linear com-
bination of latent components

x(k) = As(k) = A [s1(k), ..., sm(k)]
T
, (1)

where s(k) ∈ Rm, matrix A = [aij ∈ Rm×m represents
the mixing system. The relation (1) stands for decom-
position of prediction results x into latent components
vector s and mixing matrix A. If the destructive part of
the signal is removed (the signals are replaced with zero,
si(k) for i ∈ D2) and the constructive components are
mixed back, the modified prediction results x̂(k) will be
improved (or filtered): sj , j ∈ D1

x̂(k) = Aŝ(k) = Âs(k), (2)
where ŝj(k) = sj(k) for j ∈ D1, ŝj(k) = 0 for j ∈ D2,
and Â = [âij ], where âij = aij for j ∈ D1, âij = 0 for
j ∈ D2.

The crucial point of the above concept is proper A
and S estimation. It is difficult task because we don’t
have information which decomposition is most adequate.
The most adequate methods to solve the first problem
seem to be the blind signal separation (BSS) methods.
Let’s us note that, the ICA approach represents chosen
data decomposition from wide set of blind signal separa-
tion methods, but other techniques like smooth compo-
nent analysis (SmCA), sparse component analysis (SCA),
principal component analysis (PCA), Nonnegative Ma-
trix Factorisation or Tensor Decompositions can be ap-
plied either [2, 9–11].

As a consequence of incomplete purity of the estimated
components some extension to the re-composition con-
cept must be introduced, in which, instead of the elimi-
nation of a component that was found to be disruptive,
we change its impact by reducing the weight or applying
the filtration. These operations can be realized by intro-
ducing a complex, adaptive re-composition system with
its optimization (learning). In this way the system gains
some flexibility as destructive impact of the component
does not have to be zero in order to obtain improved
estimates. Assuming that, the basis latent components
might be not pure so their impact should have weight
other than 0 or 1, we can try to find the better mixing
system than described by Â. The new mixing system can
be formulated in more general form than linear, e.g. we
can take MLP neural network as the mixing system

X̂ = g(2)
(
B(2)

[
g(1)

(
B(1)S + b(1)

)]
+ b(2)

)
, (3)

where g(i)(.) is a vector of nonlinearities, B(i) is a weight
matrix and b(i) is a bias vector respectively for i-th hid-
den layer, i = 1, 2. The first weight layer will produce
results related to (3) if we take B(1) = Â. Due to some
nonlinearity introduced by the first and the second layer,
the proposed mixing system gained some flexibility in
comparison to the linear form. If we learn the whole struc-
ture starting from system described by Â with initial
weights of B(1)(0) = Â, we can expect the results will be
improved.

3. Destructive components as noisy signal
identification

In the prediction improvement procedure, after the in-
dependent signals are identified the next step is to distin-
guish the informative elements from the noises and dis-
turbances [12, 13]. Therefore, we need to classify latent
components as constructive or destructive. In general,
this can be difficult task because the obtained compo-
nents might be somewhere between constructive and de-
structive. It means that particular component can have
constructive impact on one model and destructive on the
other. Also, there may exist components destructive as
a single but constructive in a group. All these effects can
appear due to many reasons like improper assumption
about the linear structure for model results, transforma-
tion choice or estimation algorithm features. Therefore,
we have to check the impact of almost all components and
their combinations on final results. This can be done in
the following way.

The simplest, but somehow trivial method is to elimi-
nate particular components combinations and combining
the rest by mixing matrix. The main disadvantage of this
method is the curse of dimensionality because the large
number of models gives large number of basis signals and
huge number of basis signals combinations.

The other method for component classification can be
based on some theoretical assumptions and is addressed
for the prediction models optimized under MSE error and
using ICA or PCA decompositions. Yet another approach
is based on the assumption that the destructive compo-
nents may be interpreted in terms of noise, for which
we can deliver mathematical characteristics describing
them. This method is particularly appropriate if the de-
structive components can be modeled as some stochastic
processes including white noise. However, in practice, we
rarely deal with white noises, and the components are
the mixture of random and deterministic signals. As a
result, we aim to analyze the degree of randomness of
each component rather than classifying them into white
noise or deterministic signals. Therefore, we need some
measure to compare the signal with the noise and some
procedure to evaluate the these results.

Identification of destructive components may be con-
sidered as benchmarking the signal to the noise using
a given similarity measure. The choice of the appropri-
ate measure is an important issue. It may include ap-
plication of correlational approach, p-norms approach or
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divergence functions. The other approach is related to
signal randomness assessment which includes analysis of
such signal characteristics as volatility, smoothness or the
existence of internal relations. Among the other tradi-
tionally used techniques, there are analysis of variance,
R/S and Hurst exponent analysis, or methods based on
the autocorrelation functions [14, 15].

In our approach, to assess the similarity of the signal
to the noise and its randomness we propose a general
scheme for comparative analysis, described with the fol-
lowing formula:

ϕ1,2(y1, y2) = 2
u(y1 + y2)

u(y1) + u(y2)
, (4)

where u(y) is a measure of randomness assessment.
The choice of this measure may be related to the nature
of the problem, or it can be to some extent automatic and
arbitrary. It is also possible to test several different func-
tions u(y) such as variance of the signal u(y) = var(y) or
Hurst’s exponent of the signal u(y) = H(y).

If one of the signals is assumed to be the reference noise
then the interpretation of (4) is relatively simple and in-
tuitive and for chosen functions u(y) take some constant
value. Having y1 and y2 with similar statistical charac-
teristics, e.g. both of them are Gaussian noise, then for
Hurst exponent the measure is equal to 1. In other case,
we would get the values different than 1. In addition,
by selecting an appropriate form of u(y), the measure
may be largely independent of the distribution and this
is evident for the Hurst exponent.

To explore directly the temporal characteristics of the
noise signals we propose following variability measure:

u(y) =

1
N

N∑
k=2

|y(k)− y(k − 1)|

ρ(max(y)−min(y))
, (5)

where k is observation index and ρ(z) is zero indicator,
for ρ(z) = 1, z = 1 and ρ(z) = z where z 6= 1. Although
other potential delays with higher lags than just y(k-1)
are possible we propose such structure as most natural
and easy to apply. The measure (5) has simple interpre-
tation: it is maximal when the changes in each iteration
step are equal to range (maximal change), and is minimal
when data are constant. The possible values are rang-
ing from 0 to 1. Function ρ(z) was introduced to avoid
dividing by zero.

In practical applications, it may be necessary to use
some smoothness measure as the objective function in
optimization problems, thus approximating the absolute
value function log(cosh(u)), can be obtained by a mod-
ified form of a differentiable smoothness measure of the
form:

u(y) =

1
N

N∑
k=2

log(cosh(y(k)− y(k − 1)))

log(cosh(ρ(max(y)−min(y))))
, (6)

To maintain proportional scales of numerator and de-
nominator, the expression in the denominator (6) was
also converted by log(cosh(u)) non-linearity. If we as-
sume that the signal was normalized to the interval (0, 1)
then the expression (6) takes the form:

ϕ1,2(y1, y2) = (7)
N∑

k=2

log(cosh(y1(k)+y2(k)−y1(k−1)−y2(k−1)))

N∑
k=2

(log(cosh(y1(k)−y1(k−1)))+ log(cosh(y1(k)−y1(k−1))))

.

In case of multiple signals, their mutual similarity
ϕi,j(yi, yj) may be presented in a matrix form:

Φ =


ϕ1,1 · · · ϕ1,m

...
. . .

...
ϕn,1 · · · ϕn,m

 . (8)

Additional characteristics which can be explored us-
ing the above measures (5)–(7) are directly related to
the existence of the temporal structure. In case of ran-
dom noise the mixing procedure should not significantly
change the value of volatility (variability, smoothness)
measure and consequently the similarity measure. How-
ever, for signals in which the observation order is impor-
tant then the random mixing of signal samples should
significantly change the values of measures (5)–(7).

To illustrate how the measure works we will consider
the set of source signals, as presented in Fig. 1a. Fig-
ure 1b shows the same signals but the observation order
was randomly assigned. Signals were also decomposed
by ICA algorithm and therefore, they are also mutually
decorrelated.

The matrices corresponding to the signals presented
in Fig. 1 have the following values for source signals (Φ1)
and the signals with observation order randomly as-
signed (Φ2):

Φ1=



1 0.8220 0.9282 0.7649 1.5188 1.5814
0.8220 1 0.8030 0.7998 1.8006 1.8741
0.9282 0.8030 1 0.8643 1.7822 1.9042
0.7649 0.7998 0.8643 1 1.8291 1.7849
1.5188 1.8006 1.7822 1.8291 1 0.9902

1.5814 1.8741 1.9042 1.7849 0.9902 1


,

Φ2=



1 0.7308 0.7136 0.7358 0.5878 0.5437
0.7308 1 0.7121 0.8286 0.6094 0.5387
0.7136 0.7121 1 0.7376 0.5821 0.5358
0.7358 0.8286 0.7376 1 0.7375 0.6912
0.5878 0.6094 0.5821 0.7375 1 0.9452

0.5437 0.5387 0.5358 0.6912 0.9452 1


.

As we can see, according the matrix Φ1, the last two
noise signals (values in bold) are identified as these which
have the highest similarity. It is also apparent that the
value of similarity did not changed substantially after
mixing the signals, as presented in matrix Φ2 (in bold).
It should be noted that because of the fact that the sig-
nals are decorrelated there is no possibility to determine
their similarity using correlation approach. Also, calcu-
lating the distance measured by the chosen p-norm does
not give unambiguous results, too.
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Fig. 1. Source signals (a) and the signals with observation order randomly assigned (b).

4. Algorithm outline

Based on the proposed aggregation concept and having
the method for components classification, we can formu-
late aggregation algorithm as follows.

1. Store prediction results xi in x = [x1, x2, ..., xm]T

and decompose the models results x, into
independent latent components s(t) =
[s1(t), s2(t), ..., sn(t)]T by the chosen ICA al-
gorithm;

2. Classify latent components as destructive si(t) =
s̃i(t) or constructive si(t) = ŝi(t) on prediction re-
sults. For MSE criterion it can be made by cor-
relation analysis, see Sect. 3, or in general case by
computational test with inverse to ICA process.

3. Learn MLP neural network with latent components
as an input to obtain effective mixing system, the
initial weights matrix for the first layer is inverse
matrix to matrix from ICA decomposition, where
columns related to particular destructive compo-
nents are replaced by vectors of zeros.

5. Number of aggregated models —
methodological issues

The models aggregation process assumes itself some-
how the increase in the complexity of the solution. It is
desirable when the effects of aggregation are satisfactory
for the researcher in terms of prediction results improve-
ment. It seems that the greatest value added can be
achieved by combining different forecasting techniques.
In practice, the aggregation concerns models of similar
type or structure, using different samples of the training
dataset (i.e. bootstrap aggregating) and finally the most
popular way to integrate this information is averaging
(for regression) or voting (for classification) [4]. This is
due to the fact that existing methods for models aggre-
gation (ensemble methods) are addressed to a relatively
different situation, in which we have a large number of
results obtained with the same method.

Based on these findings, the article highlights a small
number of aggregated models. This is designed to show
the difference between this method and the typical aggre-
gation methods like boosting and bagging. These latter

ones aggregate models with relatively restrictive condi-
tions to the form of aggregated models. Therefore, we
deal with some averaging of the results generated by the
same model (in terms of architecture) but learned on
different subsets rather than the actual use of informa-
tion coming from different approaches. What is impor-
tant, these techniques have relatively strong assumptions
about the statistical characteristics of the models errors
which means strong assumptions about their nature and
the way these models are built.

In our approach, in contrast to other methods, the fore-
cast errors are treated in terms of physical disturbance
rather than purely mathematical value of the predeter-
mined criterion. This means that the removal of such a
true distortion can improve any error criterion. There-
fore, there is a question of how can we separate these
noises. This is the issue which has been widely developed
on the basis of general filtration and signal separation
methods. However, the classical filtration/separation as-
sumes spectral variation of filtered signals, what, in prac-
tice, significantly limits the number of problems possible
to be solved. The situation changed significantly with the
development of methods for blind signals separation, al-
lowing for separation and consequently the elimination of
signals based on other characteristics than the frequency.
The only drawback is the necessity to have multiple sig-
nals/observations, since blind signal separation problem
and its solution is considered in multidimensional terms.

Consequently, the elimination of noises from the pre-
diction results using blind signal separation methods re-
quires two separate prediction results and the final result
is a combination (linear or nonlinear) of improved basic
models, which is the consequence of the adopted method.
Therefore, aggregation even of two neural models with
different structures is possible, what so far, used to be
associated with a simple averaging.

6. Practical experiment

In this paragraph, we will consider the short term
forecasting problem of electricity demand. For this rea-
son a 24-hour ahead forecast was prepared based on
historical data about energy consumption from Polish
power system. The data set included 86400 observa-
tions (hourly data) covering time span between years
1988 and 1998, please see Fig. 2 for data characteristics.
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Fig. 2. Hourly load observed during in 1997 (vertical
axis shows normalized load and horizontal axis shows
subsequent observations).

The available variables to create the forecast included
energy demand from the last 24 hours and calendar vari-
ables such as month, day of the month, day of the week,
and holiday indicator. In this case, we don’t expect to
create a single and precise descriptive model, but rather
we focus, as in the data mining methodology, on test-
ing various methods and models, which are then ag-
gregated. For this reason, there were six neural net-
works models build with different learning algorithms
and one hidden layer with 12, 18, 24, 27, 30, 33 neu-
rons respectively and labeled as M1:MLP12, M2:MLP18,
M3:MLP24, M4:MLP27, M5:MLP30, M6:MLP33.

The experiment was conducted for various types
of decomposition and different algorithms realizing it.
We proposed three ICA algorithms such as: FPICA,
SANG and JADE [16]. The test results with the MAPE
criterion are presented in Table. The best results were
typed in bold.

TABLE
The results of BSS aggregation measured with MAPE error.

MAPE ×10−3 M1 M2 M3 M4 M5 M6
Primary models 23.9431 23.5021 23.6750 23.9850 24.1374 23.5776

ICA
FPICA 23.8712 23.0011 23.5819 23.6068 24.0282 23.5715
SANG 24.1180 22.3682 23.8860 24.0345 24.2017 23.7412
JADE 24.1081 23.5996 23.7717 23.7653 22.5332 22.3239

The best results were obtained for the JADE algo-
rithm, and the improvement rate observed reached 5%
for model M6, calculated as the best model after aggre-
gation to the best primary model (MAPE error ×10−3

22.3239 vs. 23.5021).
Identification of noise components was made based

on Φ matrix values. As the reference noise a Gaussian
noise was proposed. The set of reference signals, among
which the first six are the extracted components, and
the seventh signal is the Gaussian noise, is presented
below:

Φ=



1.0000 1.3028 1.2878 1.3337 1.0882 1.1248 1.2519

1.3028 1.0000 0.9787 0.9627 1.0812 0.9945 0.8347

1.2878 0.9787 1.0000 0.7792 1.3205 1.0916 0.8182

1.3337 0.9627 0.7792 1.0000 0.8768 1.0478 0.8217

1.0882 1.0812 1.3205 0.8768 1.0000 0.9130 0.7008

1.1248 0.9945 1.0916 1.0478 0.9130 1.0000 0.9305

1.2519 0.8347 0.8182 0.8217 0.7008 0.9305 1.0000


.

The values of matrix Φ in bold present the similarity
of the individual components to the reference noise.

The other algorithms delivered slightly worse results.
The SANG algorithm achieved improvement rate of 4.8%
for model M2, calculated as the best model after aggre-
gation to the best primary model (MAPE error ×10−3 of
22.3682 vs. 23.5021). Finally, FPICA algorithm reached
improvement of 2.1% for model M2 (MAPE error ×10−3

of 23.0011 vs. 23.5021).
The second part of the experiment was proposed to

illustrate how the prediction improvement depends on
the number of models used for BSS aggregation. The pro-
cedure was as follows.

Having set of six models we create subsets of n mod-
els, where n = 2, 3, 4, 5, 6. For a given set of
n models we make ICA decomposition using FPICA,
SANG and JADE algorithms, and then we calcu-
late the average value of the best results over all n-
element models subsets. In particular, for six mod-
els we deal with only one set of models (M1-M2-M3-
M4-M5-M6). For five models we deal with six subsets
(M1-M2-M3-M4-M5, M1-M2-M3-M4-M6, M2-M3-M4-
M5-M6, M1-M3-M4-M5-M6, M1-M2-M4-M5-M6, M1-
M2-M3-M5-M6), etc. The experiment was performed for
MAPE and MSE error, please see Fig. 3a for details of
MAPE and Fig. 3b for MSE.

We observed that with increasing number of aggre-
gated models the efficiency of aggregation was improved.
In terms of MAPE, we could observe growing effective-
ness of the improvement procedure with increasing num-
ber of models, for JADE and SANG algorithms. Al-
though, we observed a slight drop in improvement ra-
tio for FPICA algorithm using 5 models for aggregation.
Nevertheless, even a small number of aggregated mod-
els, using just two or three of them, delivered noticeable
improvement which may be considered relevant from a
practical point of view. In terms of MSE, there was clear
dependence between the number of aggregated models
and effectiveness of the procedure.
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Fig. 3. Prediction improvement observed for different number of aggregated models and measured with (a) MAPE,
(b) MSE.

7. Results and concluding remarks

In this article we aim to develop new aggregation
method applicable for predictive models. Its main idea
is based on decomposition of the prediction results into
underlying independent components and identification of
components showing strong similarity to the noise.

The experiments were run both, on illustrative simu-
lated data and the real problem of electricity forecast-
ing, and confirmed the effectiveness of the proposed ap-
proach. Based on the electricity load data we showed that
presented approach is effective for ensemble prediction
taking into account MAPE error criteria and different
number of aggregated models. As a result we could bene-
fit of about 5% of MAPE reduction (best primary model
vs. best model after decomposition) which may be re-
garded as significant improvement for power sector enti-
ties to maintain high efficiency in terms of balancing the
market better.

It should be noted that the proposed method is ad-
equate for a small number of aggregated models which
meets typical requirement for ensemble methods.
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