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of Correlations in Financial Data

M. Sawa, D. Grech∗

Institute of Theoretical Physics, University of Wrocław, Econophysics and Time Series Analysis Group (ETSA),
pl. M. Borna 9, PL–50204 Wrocław, Poland

We present an alternative method based on random matrix approach that enables to distinguish the respec-
tive role of temporal autocorrelations inside given time series and cross correlations between various time series.
The proposed algorithm is based on the properties of Wigner eigenspectrum of random matrices instead of com-
monly used Wishart eigenspectrum methodology. It is then qualitatively and quantitatively applied to financial
data of stocks building WIG 30 — the main Warsaw Stock Exchange Index.
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1. Introduction

One often considers cross correlations between 1-dim
time series Xα

i and Xβ
j , where i, j = 1, ..., T is the length

of discussed data and α, β = 1, ..., N mark different series.
As a standard attempt to do so the two-point simultane-
ous cross correlation function Cαβ (−1 ≤ Cαβ ≤ 1)

Cαβ =
1

T

T∑
i,j=1

Xα
i X

β
j δij (1)

for centered and normalized data in Xα, Xβ is usually
evaluated. The cross correlations with some time lag can
also be considered in a similar manner.

The very elegant way to look at global cross correlation
properties between all considered series is based on ran-
dom matrix (RM) approach. In this description, one cal-
culates the spectrum of N eigenvalues λn (n = 1, ..., N)
of CαβN×N matrix (eigenspectrum), which in turn is the
subject of comparison with the corresponding eigenspec-
trum of independent and identically distributed Y αi data
with finite variance. The eigenspectrum ρ(λ) of corre-
lation matrix Mαβ of Y α and Y β series, known as
Wishart-Marčenko-Pastur (WMP) spectrum [1, 2], reads
for T,N →∞

ρWMP(λ) =
Q

2πσ

√
(λ+ − λ)(λ− λ−)

λ
, (2)

where Q = T
N = const is kept, σ is the standard devia-

tion of Y αi data and

λ± = (1± 1/
√
Q)2 (3)

are the edge values of WMP spectrum.
Since the Wishart spectrum is limited to λ− ≤ λ ≤ λ+,

any deviation from this limit may have significance
of cross correlation present in data. Moreover, the
spread of eigenvalue spectrum of Mαβ with respect to
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λ− ≤ λ ≤ λ+ tells us on the strength of such cross cor-
relations in a system producing data Xα

i (α = 1, ..., N ;
i = 1, ..., T ).

This RM approach [3–6] was successfully used in econo-
physics and in finance to look for cross correlations
between various one-dimensional subseries of multidi-
mensional time series built by various stocks data (see,
e.g., [7–11]). To illustrate this idea we provide an ex-
ample based on stock data taken from the main Polish
stock exchange index WIG 30 in the period April 1, 2010–
Dec. 30, 2013 which corresponds to total T = 936 inputs
of N = 26 companies†.

Let us define the returns

ri =
pi − pi−1

pi−1
, (4)

where pi is a price of a given stock at i-th day which
are thereafter organized into WN×T matrix of centered
and normalized returns. The top part of Fig. 1 shows the
eigenspectrum of Cαβ correlation matrix compared with
the corresponding Wishart spectrum, while the bottom
part of Fig. 1 reveals the results of similar analysis done
for absolute returns |ri|, i.e., the simplest transform of
returns discussed in economics and econophysics.

The deviation from Wishart spectrum (blue plot) is
usually reported in literature [7–11] as the evidence
of cross correlation existing between returns of various
stocks in considered time window. However, it is not dif-
ficult to notice that an approach based only on investi-
gation of differences from WMP eigenspectrum may suf-
fer in many real situations from several shortcomings.
First, small statistics of data (particularly a small num-
ber of investigated one dimensional subseries) leads to
imprecise edges of spectrum. Second, the WMP eigen-
spectrum method is completely robust to temporal auto-
correlations in data. Thus the question arises — to what

†26 companies of WIG 30 had long enough data history in the
discussed period (stocks not included: PZU, TPE, JSW, ALR).
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Fig. 1. Eigenspectra of correlation matrix C(r) for re-
turns (top part) and absolute returns C(|r|) (bottom) of
WIG 30 data in the period April 1, 2010–Dec. 30, 2013.
The comparison with corresponding WMP spectrum of
the same Q = T/N is shown (blue plot) with numerical
values from Eq. (3).

extend the particular spectrum like the one in Fig. 1 is
a result of small number of considered time series N or
the finite length T of series (which theoretically should
be both infinite) and to what extend it is truly caused by
cross correlations present in a system.

The next obstacle is that one would like to have
a RM based method allowing to extract also tempo-
ral autocorrelations in data. An independent measure-
ment of autocorrelations and cross correlations within
the same RM approach would be a great advantage pro-
viding the same method of analysis to compare their
strengths together. An important question about the mu-
tual (relative) quantitative relation between autocorre-
lations in Xα and cross correlations between Xα and
Xβ (α 6= β) cannot be answered within WMP analysis.
Moreover, it would be nice to have a tool that inves-
tigates not only two-point correlations but also higher
order contributions to correlation features.

One has to be also aware that direct calculations of
cross and autocorrelation properties from given data is
usually a nontrivial task. It is so because direct calcula-
tion of cross correlation (autocorrelation) function suffers
from severe problems like noise present in data, possible
non-stationarity and insufficient statistics (already men-
tioned also for WMP approach).

We therefore propose to analyze eigenvalue spectrum
of square symmetric matrices constructed from entries
of the primary WN×T matrix built out of N time series
containing T data each. For the purpose of this paper we
will use WIG 30 data to do so. Then we will compare
the obtained eigenspectrum with the Wigner semicircle
distribution [12]. Note that the same approach can be
easily extended to other data sets of similar form, even
taken outside finance.

2. Description of method and data analysis

Let us recall that the eigenspectrum of the square,
symmetric, real N×N matrix with independent N2 cen-
tered entries and unit variance, known as Wigner spec-
trum, reads in the limit N →∞

ρW (λ) =
1

2π

√
4− λ2. (5)

The whole analysis is similar to the one proposed by
one of us (D.G.) in [13]. In order to built square matri-
ces from the originalWN×T matrix data we reshape it by
splitting it into [ T

m2N ], (m = 1, 2, ...) matrices WN×m2N

with nonoverlapping entries. Then we augment these ma-
trices one under another to form just one WmN×mN
matrix.

In the case of WIG 30 the originalW26×936 matrix was
reshaped into square matrix by splitting it into m = 6
horizontal/time sectors of size 26×156, then augmenting
these one under another. The final matrix obtained this
way, after being symmetrized and normalized, is denoted
further on as S (S156×156 in this case). The eigenspec-
tra of S156×156(r) and S156×156(|r|) built respectively for
returns r and absolute returns |r| are shown in Fig. 2.
The corresponding Wigner eigenspectrum for uncorre-
lated data has also been indicated in all figures as ref-
erence plot.

Fig. 2. Eigenspectra of just one S156×156(r) (top)
and S156×156(|r|) (bottom) matrices constructed from
W26×936(r) and W26×936(|r|) respective data of WIG 30
by reshaping procedure explained in the main text
(m = 6). The comparison with corresponding Wigner
eigenspectrum of uncorrelated data is made (blue
curve).

The problem of small statistics seems to be evident
here in a similar manner as in WMP approach because
one may only speculate if tails outside the normalized
eigenvalue range 〈−2, 2〉 are the result of correlation be-
tween series or the effect of small statistics. However here,
contrary to WMP approach, one may increase this statis-
tics reshaping the primary matrixWN×T in various ways.
For instance, choosing m = 2 one finds 9 independent
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matrices S52×52 instead of just one S156×156 for m = 6.
The total number of eigenvalues in the available statistics
will increase then up to 468 (m = 2) in opposite to the
former 156 (m = 6). Thus, by folding up the horizontal
sectors in various ways, one obtains a less or more abun-
dant statistics from the available data as shown in Fig. 2
compared with Fig. 3. The latter figure clearly suggests
that a difference from Wigner plot in Fig. 2 is not a result
of small statistics because for better statistics deviation
from Wigner plot becomes even more evident.

Fig. 3. Averaged eigenspectra of 9 independent ma-
trices S52×52(r) (top) and S52×52(|r|) (bottom) con-
structed from reshaped W26×936(r) and W26×936(|r|)
data of WIG 30 respectively (m = 2). The Wigner semi-
circle for uncorrelated data of the same size N × T is
also drawn for comparison (blue curve).

Now, we may consider the problem if within RM
method one is able to distinguish the role and respec-
tive weights of cross and autocorrelations present in sig-
nals. Note that the answer to such question was negative
in case of standard Cαβ correlation approach based on
WMP eigenspectrum. It turns out however that in our
alternative approach it is possible to exhaust such infor-
mation by applying diversified shuffling methods to all
signals. In order to kill cross correlations between differ-
ent companies (rows in WN×T matrix), preserving how-
ever autocorrelations (of all orders), we make random
“cyclic shifting” of data in rows of original matrix WN×T
before reshaping it into S156×156 one which has no cross
correlations present. This matrix will be denoted here
further on as Sac.

We have chosen to perform all calculations based on
S156×156 matrix (m = 6) since the shuffling procedure
offers sufficient (as we will see) statistics, so that this
statistics does not have to be additionally amplified by
reshaping original WIG 30 data into very small square
matrices, i.e., S52×52 (m = 2) or S26×26 (m = 1) respec-
tively. The details of applied procedure are as follows.

A natural number nα, (1 ≤ nα ≤ T , α = 1, ..., N)
is chosen at random from discrete uniform distribu-
tion separately for each row of WN×T matrix and

a new matrix W
(cs)
N×T is formed with cyclically shifted

rows — the α-th row (wα1, wα2, ..., wαT ) is replaced
by (wαnα

, wαnα+1, ..., wαT , wα1, wα2, ..., wαnα−1). Then
W

(cs)
N×T matrix is reshaped into a square matrix and sym-

metrized as before. We calculate its spectrum and the
process is repeated 104 times. It results in spectra (aver-
aged eigenspectrum) presented in Fig. 4.

Fig. 4. Averaged eigenspectra of Sac(r) matrix (top)
with “killed” cross correlations (only autocorrelations
are left in signal) extracted from W26×936(r) of WIG 30
data. The same for absolute returns is shown for Sac(|r|)
matrix (bottom). Wigner spectrum is shown for com-
parison (blue curve).

It follows from the above description that the proce-
dure of “cyclic shuffling” can only marginally destroy au-
tocorrelations of length ≥ τ in primary signal containing
T data by respective ratio ≤ τ/T (0.5% for τ . 5 days,
i.e., for one trading week). Thus the method is particu-
larly effective in searching for short and medium — range
autocorrelations (short or medium-term memory effects
in multidimensional data). One expects that long-term
memory is not very much evident in financial data so the
proposed method is particularly eligible for application
here.

On the other hand, to kill autocorrelations preserv-
ing however cross correlations (of any order), we perform
random “shuffling” of columns of the original data ma-
trix reshaping resultant matrices into another S156×156

ones denoted further on by Scc. Due to the way the shuf-
fling was done in this case, cross correlations are still
preserved. The corresponding averaged eigenspectrum in
this case after 104 repetitions is presented in Fig. 5.
The average position of the tail edge of eigenvalue spectra
is marked as 〈τ±cc〉 in case of killed autocorrelations (cross
correlations are left only), and 〈τ±ac〉 in case of killed cross
correlations (autocorrelations being left), where ± corre-
sponds to the right (positive) and to the left (negative)
tail respectively.

The above findings should be referred to the case
of entirely random uncorrelated data. The averaged
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Fig. 5. Same as in Fig. 4 but for “killed” autocorrela-
tions in signal (only cross correlations are present).

eigenspectra of matrices S0 obtained by reshaping in
a similar manner the completely shuffled WN×T data
(to remove all cross and autocorrelations) is presented
in Fig. 6.

The eigenspectrum of S0(r) matrix has the averaged
tail edges positioned at: 〈τ+0 〉(r) = 1.97 ± 0.05 and
〈τ−0 〉(r) = −1.97 ± 0.05 where the similar notation as
for Sac and Scc matrices is used. The corresponding re-
sults for eigenspectrum of S0(|r|) matrix built for abso-
lute returns read: 〈τ+0 〉(|r|) = 2.00±0.07 and 〈τ−0 〉(|r|) =
−1.99± 0.05. In all cases the mean and the standard de-
viation is taken from the ensemble eigenspectra of 104

matrices since the process of respective shuffling was re-
peated 104 times. The spectra in Figs. 4, 5 compared
with Fig. 6 clearly indicate existence of correlation (au-
tocorrelation and/or cross correlation) in analyzed sig-
nals. In particular, the comparison of tail edges be-
tween S0 and Sac indicates that the edges of spectrum
between completely random signal and real financial data
are at least 1σ apart for returns and 5σ apart for absolute
returns.

Thus the noticed differences in average tail lengths
shown in Fig. 4 (with extracted autocorrelations) and in
Fig. 6 (for the shuffled signal with no correlation at all)
indicate detection of very weak autocorrelations in re-
turns and somehow more significant autocorrelations in
absolute returns (both of any order). On the other hand,
the comparison of results presented in Fig. 5 (extracted
cross correlations) with those in Fig. 6 indicate detection
of cross correlations between time series. The presented
analysis is not only able to detect correlations in multi-
dimensional data but offers also possibility to detect sep-
arately autocorrelations (Fig. 4) and cross correlations
(Fig. 5). Moreover, the differences in mean tail lengths
shown in consecutive figures, when compared with ref-
erence plot of Wigner semicircle for uncorrelated matrix
entries, may be exploited to estimate quantitatively rel-
ative weights of cross correlations and autocorrelations.

Fig. 6. Averaged eigenspectra of S0(r) (top) and
S0(|r|) (bottom) matrices constructed from 104 shuf-
fles of W26×936(r) and W26×936(|r|) data matrix of
WIG 30 respectively. The very good correspondence
with Wigner distribution (blue plot) is indicated.

The predominance of cross correlations over autocor-
relations in returns (r) is visible as |〈τ±cc〉(r)| � |〈τ±ac〉(r)|
if one compares the average lengths of eigenspectrum
distributions for Sac(r) and Scc(r). This difference does
not manifest as much for absolute returns |r| since here
|〈τ±cc〉(|r|)| & |〈τ±ac〉(|r|)| (compare bottom parts of Fig. 4
and 5). The relative strength of cross correlations and
autocorrelations can be estimated introducing the subse-
quent ratios defined in a straightforward manner

∆cc/ac(r) =

[〈τ+cc〉(r)− 〈τ−cc〉(r)]− [〈τ+0 〉(r)− 〈τ
−
0 〉(r)]

[〈τ+ac〉(r)− 〈τ−ac〉(r)]− [〈τ+0 〉(r)− 〈τ
−
0 〉(r)]

(6)

in case of returns, and
∆cc/ac(|r|) =

[〈τ+cc〉(|r|)− 〈τ−cc〉(|r|)]− [〈τ+0 〉(|r|)− 〈τ
−
0 〉(|r|)]

[〈τ+ac〉(|r|)− 〈τ−ac〉(|r|)]− [〈τ+0 〉(|r|)− 〈τ
−
0 〉(|r|)]

(7)

for absolute returns |r|.
Very similar analysis allows to compare quantitatively

the autocorrelation levels between returns (r) and abso-
lute returns (|r|) :

δac(|r|/r) =

[〈τ+ac〉(|r|)− 〈τ−ac〉(|r|)]− [〈τ+0 〉(|r|)− 〈τ
−
0 〉(|r|)]

[〈τ+ac〉(r)− 〈τ−ac〉(r)]− [〈τ+0 〉(r)− 〈τ
−
0 〉(r)]

(8)

and analogously, between change of cross correlation lev-
els while we transfer from returns to absolute returns:

δcc(|r|/r) =

[〈τ+cc〉(|r|)− 〈τ−cc〉(|r|)]− [〈τ+0 〉(|r|)− 〈τ
−
0 〉(|r|)]

[〈τ+cc〉(r)− 〈τ−cc〉(r)]− [〈τ+0 〉(r)− 〈τ
−
0 〉(r)]

. (9)

Substituting numerical values of tail positions for
eigenspectra of the above generated matrices we find
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∆cc/ac(r) ≈ 12.67 and ∆cc/ac(|r|) ≈ 1.40. Simultane-
ously, the relative strength of autocorrelations between
|r| and r reaches the level δac(|r|/r) ≈ 5.67, while
the strength of cross correlations drops down for |r| when
compared with r because for the latter ratio one finds
δcc(|r|/r) ≈ 0.63.

The latter results can be compared with the average
two point Pearson correlation values 〈C(2)

cc 〉 calculated di-
rectly from Eq. (1) for each company separately, where
the average is taken over all companies in the index.
To be precise let us define:

〈C(2)
cc 〉 =

2

N(N − 1)

∑
α>β

Cαβcc , (10)

where N = 26. On the other hand, the average two
point autocorrelation function 〈C(2)

ac 〉 can be simply pos-
tulated as:

〈C(2)
ac 〉 =

1

N

N∑
α=1

[
T∑
s=1

1

T
< Xα(t)Xα(t+ s) >2

t

] 1
2

, (11)

where the maximal one month trading time lag T can
be assumed to incorporate both short and medium-term
autocorrelations.

The obtained numerical results 〈C(2)
cc (r)〉 = 0.18,

〈C(2)
cc (|r|)〉 = 0.27, 〈C(2)

ac (r)〉 = 0.02 and 〈C(2)
ac (|r|)〉 = 0.11

lead to corresponding quantitative ratios δ(2)ac (|r|/r) ≈ 5.50

and δ
(2)
cc (|r|/r) ≈ 0.65 being in very good agreement with

RM outcomes shown above. Note however, that these two
point correlations can only be treated as the “first order”
approximation, while RM approach deals with higher or-
der corrections as well.

3. Concluding remarks

Concluding, we state that RM approach based on
Wigner spectrum analysis can be used to compare quali-
tatively and quantitatively different forms of correlations
in multidimensional data. In our example based on War-
saw Stock Exchange data, the role of autocorrelations in-
creases and the role of cross correlations decreases when
one proceeds from returns (r) to absolute returns |r| (thus
revealing the importance of sign in returns). The ap-
proach considering the average tail lengths of probability
distribution we presented in this article (instead of cu-
mulative distributions of matrix eigenspectra) seems to
be statistically more reliable since it eliminates large fluc-
tuations from eigenspectrum. This is why we adopted it
here.

In this RM based approach higher orders of correla-
tions as well as the influence of short term memory is
included. Therefore we should not be surprised that very
small autocorrelation effect in primary data was observed
(see Fig. 4 in comparison with Fig. 6). This effect in-
creases about six times when one moves from r to |r|.
Simultaneously the cross correlation level in between se-
ries is sensitive to the presence of sign in returns in an op-
posite direction. The cross correlations strength between
absolute returns is about 40% smaller than the cross cor-
relation strength for returns. It confirms an importance

and influence of sign in price change on the magnitude of
cross correlation.

Note that in the presented analysis all quantitative re-
sults take automatically into account also higher corre-
lation orders. Therefore they are more general than the
outcomes of the standard approach when only two-point
correlation function is considered. Finally, it is worth em-
phasizing that this kind of analysis can be easy extended
to investigate mutual relationship between arbitrary data
in multidimensional time series of any origin.
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