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We postulate a generalization of well-known logistic map to open the possibility of optimization the modelling
process of the population evolution. For proposed generalized equation we illustrate the character of the transition
from regularity to chaos for the whole spectrum of model parameters. As an example we consider specific cases
for both periodic and chaotic regime. We focus on the character of the corresponding bifurcation sequence and on
the quantitative nature of the resulting attractor as well as its universal attribute (Feigenbaum constant).
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1. Introduction

Since the dawn time the chaos is an indispensable
part of human life. One of the most famous models with
chaotic behavior is the logistic map [1–3]. Proposed ex-
tension of the case in form of generalized difference equa-
tion reads [4]:

xn+1 = rxpn(1− xqn), (1)
x ∈ [0, 1], (p, q) > 0, n = 0, 1, 2, ..., where two new
parameters p and q may assume any positive values.
The standard logistic map thus corresponds to special
case of Eq. (1) for p = q = 1. Its simple analytic
form meant that it was used in many scientific disciplines
such as biology, cryptography, communication chemical
physics and stock market [5–8]. One of the mathemat-
ical models of chaos was discovered by Mitchell Feigen-
baum [9–12]. Feigenbaum considered ordinary difference
equations used for example in biology to describe the
development of population in its dependence on time.
He discovered that population oscillates in time between
stable powers (fixed points), the number of which doubles
according to changes in the power of external parameter.
The generalization of the Feigenbaum model contains all
first-order difference equations f(xn) = xn+1. The con-
dition for the existence of chaos is the single maximum of
a function f(xn). Feigenbaum also proved that the tran-
sition to chaos is described by two universal constans α
and δ, later named the Feigenbaum numbers.

We quote here a few definitions which are basic in the
development of this exposition.
Definition 1. [cf. [13], p. 62]

Let I = [a, b] ⊂ <, a < b, f(I) ⊂ I. Discrete iterations of
a function f : I → I are called functions fn : I→I defined
inductively: f0 = id, fn+1 = f ◦ fn, n = 1, 2, 3, ....
Definition 2. [cf. [13], p. 62]

The sequence {xn}, where xn = fn(x0) is called the
sequence of iterates of a function f generated by point
x0 ∈ I.
Definition 3. [cf. [13], p. 65]

A point s ∈ I, with f(s) = s is called a first-order fixed
point of f . A fixed point s of a function f is locally stable
if there exists a neighbourhood Us such that all sequences
of iterates are convergent to s for x0 ∈ Us.

Theorem 1. [see [13], p. 68]
If function f is differentiable in fixed point s and |f ′(s)|
< 1, then s is attractive.
Definition 4. [cf. 13], p. 72]

Let f : I → I. We say that s is a periodic point of the
function f , or that s generates a cycle of order k ≥ 2, if
fk(s) = s and ∀i<kf (i)(s) 6= s.
Theorem 2. [14]
If function f has a cycle of order different to 2k, then f is
chaotic.
Theorem 3. [cf. [13], p. 79]
For arbitrary continuous function f : I → I existence
cycles of orderm involve the existence cycles of order n in
the following order: 3� 5� 7� 2 ·3� 2 ·5� 2 ·7...�
2k · 3� 2k · 7� ...� 2k � ...� 8� 4� 2� 1.

1.1 The conventional logistic map

The Logistic map [1–3],
f(xn) = xn+1 = rxn(1− xn),

x ∈ [0, 1], n = 0, 1, 2, ... (2)
is one of the most simple forms of a chaotic process. Ba-
sically, this map, like any one-dimensional map, is a rule
for getting a number from a number. The parameter r
is fixed, but if one studies the map for different values
of r (up to 4, else the unit interval is no longer invari-
ant) it is found that r is the catalyst for chaos. After
many iterations x reaches some values independent of its
starting value 3 regimes: r < 1 : x = 0 for large n,
1 < r < 3 : x = constant for large n, 3 < r < r∞ : cyclic
behavior, where r∞ ≈ 3.56, r∞ < r ≤ 4 : mostly chaotic.
An interesting thing happens if a value of r greater than 3
is chosen. The map becomes unstable and we get a pitch-
fork bifurcation with two stable orbits of period two cor-
responding to the two stable fixed points of the second
iteration of f . With r slightly bigger than 3.54, the pop-
ulation will oscillate between 8 values, then 16, 32, etc.
The lengths of the parameter intervals which yield the
same number of oscillations decrease rapidly; the ratio
between the lengths of two successive such bifurcation in-
tervals approaches the Feigenbaum constant δ = 4.669....
The period doubling bifurcations come faster and faster
(8, 16, 32, ...), then suddenly break off. Beyond a certain
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point, known as the accumulation point r∞, periodicity
gives way to chaos. In the middle of the complexity, a
window suddenly appears with a regular period like 3
or 7 as a result of mode locking. The 3-period bifurca-
tion occurs at r = 1 + 2

√
2, and period doubling then

begin again with cycles of 6, 12,... and 7, 14, 28,... and
then once again break off to chaos.

2. Generalized logistic map

One-dimensional representations are the simplest ar-
rangements capable to producing a chaotic movement.
Let us consider p, q > 0. We postulate non-linear func-
tion:

fr(x) = rxp(1− xq), x ∈ [0, 1] (3)
set by difference equation:

xn+1 = rxpn(1− xqn), x ∈ [0, 1], n = 0, 1, 2, .... (4)
For the first time the function (3) has been presented
in [4]. The maximum of the function (3) is reached for

x =
(

p
p+q

)1/q
, because f

′

r(x) = r(pxp−1− (p+ q)xp+q−1)

and f
′

r(x) = 0 ⇔ x =
(

p
p+q

)1/q
, < 3 (p, q) > 0. It re-

sults that
fr

(
( p

p+q )
1
q

)
=rqp

p
q

(p+q)
p+q
q

and for r ∈
(
0,

( p+q
p )

p
q (p+q)

q

)
where

(
0,

( p+q
p )

p
q (p+q)

q

)
= rmax function fr is f([0, 1])

⊂ [0, 1].
Parameter rmax depending on p and q accepts the

following limit values (Fig. 1):
lim
q→∞

rmax = 1, lim
q→0+

rmax =∞,

lim
p→∞

rmax =∞, lim
p→0+

rmax = 1.

Fig. 1. Values of rmax for generalized logistic map de-
pending on p and q (left) and depending on k (right).

For the sake of parameters p and q the function (3)
generates a lot of new functions which can be analyzed
using mathematical methods, just like for a logistic map,
thus obtaining very interesting results.
a) Let us assume that k = q

p and k > 0. Then r is depend

on the value k and r ∈
[
0, (k+1)

k+1
k

k

]
.

b) If k = 1, then p = q and rmax is independent on
p, q and rmax = 4 always — for logistic map, we have
p = q = 1 and rmax = 4.

c) If k→∞, then rmax→ 1, because limk→∞
(k+1)

k+1
k

k =1.
d) If k → 0+, then rmax → ∞, because

limk→∞
(k+1)

k+1
k

k = +∞.
e) Now let us consider a case, when p = 1 and q > 0.
Then we have

fr(x) = rx(1− xq), x ∈ [0, 1], n = 0, 1, 2, .... (5)

and r ∈
[
0, (q+1)

q+1
q

q

]
.

Taking into account the above relationship we can ob-
serve change maximum of the function (5) depending on q
(Fig. 2).

Fig. 2. fr(x) = rx(1−xq) for r = rmax depending on q.

2.1. The property of xn+1 = rxpn(1− xqn) for p = 1,
q = 2 in the periodic region

In the following part of this paper we will show that
the Feigenbaum model of transition to chaos is correct
for representation (4) for given positive values of param-
eters p and q. Therefore, we will study the dynamics of
this map in the case of p = 1 and q = 2. Then the repre-
sentation (5) assumes the following form:

fr(x) = rx(1− x2), x ∈ [0, 1], n = 0, 1, 2, .... (6)
A function fr in the point x =

√
3
3 has a local max-

imum and the value of function in this point is equal
to fr(

√
3
3 ) = 2r

√
3

9 . From this relationship, we have
f([0, 1]) ⊂ [0, 1] for r ∈ (0, 3

√
3

2 ]. The trajectories be-
havior generated by fr depends on r and, therefore, we
have to distinguish several intervals of this value:
1) For r ∈ (0, 1] all the sequences of iterates
x1, x2, x3, ..., xn depend on the initial value x0 tend to
s = 0. This point is the fixed point of the map for
r ∈ (0, 1] and according to Definition 3 it is also the
stable point of this map.
2) Let r = r1 > 1. If x = rx(1 − x2) then, x1 = 0,

x2 =
√

r−1
r , so for r > 1 function (6) has two fixed

points. Using Theorem 1 we get: f
′

r(x) = r − 3rx2,

|f ′r(0)| = r and |f ′r(
√

r−1
r )| = |3− 2r|.

Therefore, we have that x1 = 0 is an unstable fixed
point, whereas x2 =

√
r−1
r is an attractive fixed point

for r ∈ (1, 2).
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Change r from 1 to 2 has caused the migration of the
attractive point from 0 to

√
2
2 .

Conclusion 1.
For 1 < r < 2 there exists a stable fixed point attract-
ing all points. When r = r1 = 2, then |f ′r(

√
r−1
r )| =

|3 − 2r| = 1 and this point stops being an attractive
point.
3) For r = r2 ≥ 2 we will look into the stability of fixed
points fr and f

(2)
r of the map (5) as a function of pa-

rameter r, because the Feigenbaum model is generated
by bifurcations connected with iterations of a function.

Let us consider the second iteration of fr, namely
f
(2)
r (x) = r2x− r2x3− r4x3+3r4x5− 3r4x7+ r4x9, with

fixed points: x1 = 0, x2 =
√

r−1
r , x3 =

√
1
2 −

√
r2−4
2r ,

x4 =

√
1
2 +

√
r2−4
2r . Because f

′(2)
r (x) = r2 − 3r2x2 −

3r4x2 +15r4x4 − 21r4x6 +9r4x8 we have f
′(2)
r (x1) = r2,

f
′(2)
r (x2) = (3 − 2r)2, f

′(2)
r (x3) = f

′(2)
r (x4) = 9 − 2r2

whereas for 2 < r2 <
√
5 fixed points x3 and x4 are at-

tractive points according to condition in Theorem 1.
Conclusion 2.
The fixed point x =

√
r−1
r of f (1)r is also the fixed point

of f (2)r as well as of all higher iterations.
Conclusion 3.
If the fixed point of f (1)r becomes unstable, then it is also
the unstable fixed point of f (2)r and of all next iterations.
From the inequality |f ′(s)| > 1 we have |f ′(2)(s)| =

|f ′ [f(s)]f ′(s)| = |f ′(s)| > 1.
If
√
5 < r3 < r4, then the fixed points of f (2)r become re-

pulsive at the same time. Following this instability, the
fourth iteration shows two new pitchfork bifurcations giv-
ing cycle 22 order for four attractive fixed points, which
is called period duplication.

To generalize the above examples we get:
a) For rn−1 < r < rn there exists a stable cycle 2n−1,
whose elements x0, x1, x2, x3, ..., x2n−1−1 are defined by
the following connections:

fr(xi) = xi+1, f2
n−1

r (xi) = xi, |
∏
i

f
′

r(xi)| < 1.

b) For rn all points of the cycle of 2n−1 become unsta-
ble simultaneously and the bifurcation creates a new sta-
ble cycle of 2n order for f2

n

r = f2
n−1

r (f2
n−1

r ) existing for
rn−1 < r < rn.
c) For a map (6) the value of parameter rn+1 we can de-
scribe the following connection: rn+1 ≈

√
3 + rn, where

r0 = 1, r1 = 2, r2 =
√
5, ..., r∞.

d) There exists a point of accumulation of an infi-
nite number of the bifurcation of period duplication for
the finite value r which we appointed as r∞: r∞ =

limn→∞ rn = 1+
√
13

2 ≈ 2.303.
Taking into account the above, rn+1 ≈ rn,

√
3 + r = r,

r2 − r − 3 = 0, thus r = 1+
√
13

2 .

e) For the representation (6) there exists a constant,
whose value corresponds to the Feigenbaum constant:

δ = lim
n→∞

rn − rn−1
rn+1 − rn

≈ 4.61.

Proof. Let us assume that rn−1 = a. Then rn =√
3 + rn−1 =

√
3 + a, rn+1 =

√
3 + rn =

√
3 +
√
3 + a

and δ = limn→∞
rn−rn−1

rn+1−rn =
√
14 + 2

√
13 ≈ 4.61.

A Table of 2n type cycles and values of rn is given be-
low. It is clearly visible that doubling bifurcations come
faster and faster (8, 16, 32, ...) and suddenly break off
beyond a certain point known as the accumulation point
and periodicity gives way to chaos.

TABLE
The algebraic orders of the values of rn for n = 1, 2, ... are given by 1, 2, 4, 8, ....

n 1 2 3 4 5 ... 11 12 ... ∞
2n cycle 2 4 8 16 32 ... 2048 4096 ... accum. point
rn 2 2.23606... 2.28824... 2.29961... 2.30209... ... 2.3027755... 2.30277562... ... 2.30277563...

2.2. The property of xn+1 = rxpn(1− xqn) for p = 1,
q = 2 in chaotic region

a) For r∞ the bifurcation sequence ends with a set of
the infinitely numerous points, which is called the set of
Feigenbaum attraction.
b) If r∞ < r ≤ 3

√
3

2 then we observe the irregular dy-
namics of map (6) with narrow ranges in which the set
of attraction has a periodical character.
c) Numeric calculations for the representation (6) show
that the largest range is for r = rc ≈ 2.451. Then there
exists 3-cycle (Fig. 3), which according to th. 2 and th. 3,
implicates the chaos as well as the existence of cycles of
different orders.
d) For the map (6) at r = rmax = 3

√
3

2 ,

xn+1 =
3
√
3

2
xn(1− x2n) ≡ frmax

(xn), (7)

Fig. 3. Iterates of map (6) starting from x0 = 0.99.
Left: in the stable 3-cycle region for r = rc; Right:
in the chaotic region for r = rc − ∆r, ∆r = 0.001.

can be solved by the simple change of variables:
xn = cos (yn) ≡ g(yn). (8)

Then (7) can be converted into

cos (yn+1) =
3
√
3

2
cos (yn)[1− cos 2(yn)] =

3
√
3

2
cos (yn) sin

2(yn),

which has one solution yn+1=arccos
[
3
√
3

2 cos (yn)

× sin 2(yn)
]
and
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xn = arccos(
1

√
3
(
−y0 +

√
−1 + y02

) 1
3

+

(
−y0 +

√
−1 + y02

) 1
3

√
3

).

The invariant density function ρ 3
√

3
2

(x) of f 3
√

3
2

(x) can be
calculated using the following definition:

lim
N→∞

1

N

N−1∑
n=0

δ (x− xn) = lim
N→∞

1

N

N−1∑
n=0

δ (x− g(yn)) . (9)

Using ρ(y) = 1, (9) becomes: ρ 3
√

3
2

(x) =
∫ 1

0
dyρ(y)δ

×[x− h(y)] i.e.
ρ 3
√

3
2

(x) = (10)(√
x2−1−x

)2/3−1
3
√
x2−1 3

√√
x2−1−x

√
−
(√
x2−1−x

)2/3− 1

(
√
x2−1−x)

2/3+1

.

The above function is shown in Fig. 4.

Fig. 4. The invariant density function of map (6) for
r = rmax = 3

√
3

2
. Left: an analytical form represented

by the equation (10). Right: numerical simulation —
the histogram for 50000 iterations.

The invariant density function of the logistic map for
r = rmax = 4 is given by 1

π
√

(1−x)x
.

2.3. Ordered chaos — construction of an attractor
for xn+1 = rxn(1− x2n) and r=rmax=3

√
3

2

At the end of this considerations we will present a
method of the ordering of chaos. A lot of numeric ex-
periments have led to the situation where it is possi-
ble to rank chaos in such a way that the successive
iterations generated by chaotic dynamic system would
reach an attractor of a regular shape. This method also
has it, that from the sequence of several thousand it-
erations (for representation xn+1 = rxn(1 − x2n) where
r = rmax = 3

√
3

2 defined recursively) we draw up the fol-
lowing points (xn+1, xnxn+1) on a plane — we construct
an attractor. In this way an attractor comes into be-
ing, which is visited irregularly by points of successive
iterations (Fig. 5).

Fig. 5. The set of attraction for representation (6)
[60000 iterations]: (a) for r = rmax (red), r = 2.56
(blue), r = 2.53 (green), r = 2.45 (orange); (b) for
r = rmax (red), r = 2.42 (black), r = 2.4 (blue).

2.4. Bifurcation diagram and Lyapunov exponent
Nowadays the Lyapunov exponent is applicable in vari-

ous scientific disciplines such as biology, engineering, bio-
engineering and informatics [15–20]. A quantitative mea-
sure of the sensitive dependence to initial conditions is
the Lyapunov exponent, which is a measure of the ex-
ponential separation of nearby orbits. For discrete time
system xn+1 = f(xn), for an orbit starting with x0 the
Lyapunov exponent λ(x0) can be calculated by

λ(x0) = lim
n→∞

1

n

n−1∑
i=0

ln |f ′(xi)|, (11)

A positive Lyapunov exponent can be considered as an
indicator of chaos, whereas negative exponents are asso-
ciated with regular and periodic behavior of the system.
Figure 6 shows the bifurcation diagram and Lyapunov
exponent for the equation (6). It is clear that even in
chaotic areas (r∞ < r ≤ 3

√
3

2 ) there are many periodic
intervals (λ < 0).

Fig. 6. The bifurcation diagram and the Lyapunov ex-
ponent for the map (6) and 2.2 < r ≤ 3

√
3

2
.

3. Summary
Currently, modeling real-world systems is very popu-

lar. A well-known model that takes into account the de-
terministic chaos is the logistic map. However, this one-
dimensional map can be controlled only by one param-
eter. In the present contribution, we postulate a gener-
alization of the classical logistic map which is generally
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controlled by three parameters. This could allow to adapt
to the conditions prevailing in the modeled system.

We focus on the rmax parameter (depending on p
and q) which is responsible for the dynamics of the sys-
tem — among others shown that if p = q then rmax = 4.

As an example, we carry out analytical and quantita-
tive analysis in the case where p = 1 and q = 2 both in the
periodic and chaotic regime where the Lyapunov expo-
nent has positive values. It turns out that the dynamics
of this equation is faster than in the case of the logistic
map — the value of the parameter rmax ≈ 2.3 is less than
the value of rmax = 4 for the logistic map. In the peri-
odic regime we identified Feigenbaum constant δ which
is typical for all dissipative systems (also for the logistic
map). For chaotic area we have found an analytical form
of the invariant density function. For both regimes we
have proposed specific form of data representation which
allowed to obtain a non-trivial structure of an attractor
set.
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