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The stock market balance can be presented as a result of mutual effect of the supply and demand on the
market. This creates high-frequency dynamics of prices for shares, what in turn leads to the appearance of the three-
dimensional rotary trajectories of the market. The 3-D space is a Cartesian product: prices, volumes, and time.
In this space whirling vectors form rotary-spiral trajectories and, they in turn, determine in the appropriate time
periods side surfaces of solids of revolution, which rotate as well. Perpendicular projections of rotary trajectories
on planes with standing out time axis cause that economic rotary phenomena are depicted on the mentioned
planes by means of flat zigzags. Double rotating of economic vectors resembles precession movement. This is
the precession movement which guarantees oscillating-rotating vectors around the hypothetical line of economic
balance. Economic vectors are always set in rotary motion mainly by stimulating the vectors of demand and supply.
Dynamically changing volumes of the mentioned forces cause that permanent state of economic balance practically
do not exist in market reality. In the modified by the authors cobwebbed model states of fragile balance are
explained by means of precession and accompanying it nutation. The rotary movement occurs universally in our
world. The effects of vortexes from the world of nature are extremely quickly reflected in changing in chaotic way
forces of demand and supply which in turn are the main generators of economic vortexes. Then the relationship
is unambiguous and can be expressed by a short general statement claiming that vortexes generate vortexes
regardless of the environment in which they occur. The resemblance between the rotary trajectories observed
in hydrodynamics and the stock market rotary-spiral trajectory was the inspiration of the work for creating the
econophysical analogue of the so-called stock market Reynolds number (Re). The academic community has long
sought a description of the phenomenon of turbulence in financial markets, and this article is an attempt to face
this challenge. The original idea behind developing an economic equivalent of the Reynolds number was that
market vectors of volumes, prices and time components can be treated as particles of a stream of liquid flowing
through a pipe of a given cross-section. The Reynolds number, defined in this way, can be applied in research into
the dynamics of stock exchange indices and, in particular, for the development of short-term warning forecasts.
Additionally, it can be treated as a coefficient confirming (or rejecting) long-term stock market predictions.
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1. Introduction

Stock market unpredictability over time (e.g. of share
prices) has been the subject of many studies. The first
significant attempts to explain the unpredictability of a
stock market time series were made by Henri Poincaré [1].
In 1900, L. Bachelier, Poincare’s student, obtained a doc-
toral degree for his dissertation entitled “Théorie de la
spéculation” [2]. The concept applied in this disserta-
tion was that the above-mentioned unpredictability was
of a stochastic nature. Bachelier assumes that the price
change process is subject to a Gaussian distribution.
Currently, one of such stochastic processes is referred to
as the Wiener process (or Brownian motion).

The Brownian process satisfies the equation of diffu-
sion. Bachelier determined price change probability by
introducing a chain equation, currently referred to as the
Chapman-Kolmogorov Eq. [3]. At this point, it should
be also mentioned that this equation had been previously
discovered by a Polish physicist, Marian Smoluchowski —
a researcher working on Brownian motions [4]. Poincaré,
while examining the movement of a small body within the
gravitational field of two large neighbours, also discovered

a surprising phenomenon. It was proven that the move-
ment of a small body may be unpredictable — chaotic [1].
In 1889, for his research Poincaré was awarded a prize es-
tablished to honor the sixtieth birthday of Oscar II, King
of Sweden and Norway [5–7].

The phenomenon of movement unpredictability had
been previously observed in hydrodynamics. It was found
that, under some circumstances, fluid that had so far
been flowing in a regular (laminar) way may become tur-
bulent, chaotic and unpredictable. In 1823, Navier wrote
equations of motion for viscous fluids, today referred to
as Navier-Stokes equations [8]:

dv

dt
= F − 1

ρ
gradP + ϑ∆v, (1)

where: v — fluid velocity, t — time of fluid flow, ρ —
fluid density, P — pressure, F — unit mass force, ϑ —
kinematic viscosity, ∆v — Laplacian of fluid velocity.
The Navier-Stokes equation is a nonlinear equation; we
still do not know the full analytical solution of this equa-
tion. It is particularly important in these reflections,
since it describes fully-developed turbulence, namely, tur-
bulence corresponding to a high Reynolds number.
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2. Reynolds number in hydrodynamics

In 1883, the English scientist O. Reynolds, to some
extent, solved the problem of transmission from a lami-
nar into a turbulent flow [9–11]. He demonstrated that a
change of fluid flow character could be determined with
the use of a value of certain dimensionless number, to-
day referred to as the Reynolds number — Re [12–13].
We will briefly outline the genesis of this number.

An object moving through a fluid is under the influence
of resisting forces, referred to as drag. After Reynolds,
we can distinguish pressure drag R and viscous drag T .
Based on a dimensional analysis, the following formulas
were obtained [14]:

R = C
ρv2

2
S, (2)

T = Bηvl, (3)
where: B and C — dimensionless constants, v — certain
mean velocity of the fluid, ρ — density of the fluid, S —
cross-sectional area of the object, perpendicular to the
direction of the fluid flow, η — fluid viscosity, l — linear
dimension of the object.

For high velocities, pressure drag is much higher than
the viscous drag, while for small velocities, viscous drag
is much higher than the pressure drag. After Reynolds,
let us examine the following quotient:

R

T
=
Cρv2S

2Bηvl
. (4)

Dividing the dimensionless factors and rounding their
quotients to the value of one and assuming that S = l2,
we obtain a formula for Reynolds’ dimensionless constant
Re [14]:

Re =
ρvl

η
. (5)

On the basis of the empirical research, it was found
that if the examined fluid was water, then for:
Re < 1000 — fluid flow is laminar (stable),
1000 < Re < 2000 — fluid flow is unstable,
Re > 2000 — fluid flow is turbulent.

Observation of time series concerning the prices of se-
curities strengthens our conviction about their unpre-
dictable nature. Since it may not be excluded that
the financial market is subject to chaotic dynamics, it
seems justified to construct the Reynolds number ana-
logue for the financial markets [15]. While considering
the Reynolds formula, we can notice fluid viscosity as
one of its elements. Such a value is not found in financial
mathematics. Therefore, relation (5) should be trans-
formed to make it more useful from an economic point
of view.

3. Economic analogue of the Reynolds number

A construction of the economic equivalent of the
Reynolds number requires the application of two more
relations. The fluid equation proposed by the outstand-
ing Russian physicist, J. Frenkel, will be used [14]:

η =
f

D
, (6)

where f is a constant in a unit of force, and D is a diffu-
sion coefficient. Additionally, the Smoluchowski equation
(also referred to as the Einstein equation) will be useful,
which expresses the relation between the diffusion coef-
ficient and a variance determined in a time interval of
duration t:

σ2 = 2Dt. (7)
As follows from Eq. (7), the Brownian process satisfies
the diffusion equation. While finally substituting rela-
tions (6) and (7) to Eq. (4), we obtain:

Re =
ρv2S

ηvl
=
ρv2S
f
Dvl

=
DρvS

fl
=

σ2ρvS

2ftl
=
σ2ρvS

2f l
v l

=
σ2ρv2S

2fl2
. (8)

It is known from Eq. (6) that f = Dη. In case of de-
termining the Reynolds number for one stock-listed com-
pany, both diffusion and viscosity are constant, and for
this reason f has been omitted from formula (8). Viscos-
ity η is treated then as a constant equal to 1. On the other
hand, when viscosity refers to a specific index, then its
value grows with an increase in the number of companies
making up the created stock exchange index. Diffusion
is a constant value, proportional to the viscosity of the
company with the highest viscosity value in the entire
index. Time represents any length of time series. There-
fore, according to Frenkel’s approach, f/v is a time vari-
able quotient of force and velocity at which companies
making up the stock exchange index are rotating (or the
quotient of force and velocity at which one company, for
which the stock exchange Reynolds rate is determined, is
rotating). After assuming that the cross-section is equal
to the square of the linear dimension (S = l2) and skip-
ping the Frenkel constant 2f , we obtain a stock market
analogue of the Reynolds number in the following form:

Re = ρσ2v2 = ρ(σv)2, (9)
where ρ represents density (constant number of compa-
nies making up the stock exchange index), v is a certain
mean velocity of the turbulent flow, while σ2 is a volume
variance. If ρ = constans = 1, then the formula is:

Re = (σv)2. (10)
The stock market analogue of the Reynolds number,

expressed through the product of a volume variance and
the square of stock market flow velocity, can be ap-
plied in a stock market technical analysis as the so-called
Reynolds warning rate. The velocity of stock exchange
movement is equal to the tangent of the angle of inclina-
tion of the volume regression line, established with the
least squares method [16]. Determination of the thresh-
old values of Reynolds rate for various types of markets
and their later analysis may contribute to an increase in
market predictability. Values of Reynolds warning rate
are determined by periods in which the market demon-
strates stable dynamics or turbulent dynamics.
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An economic equivalent of the Reynolds number (10)
is a key element in the description of the phenomenon
of turbulence in financial markets. It enables a new ap-
proach to business dynamics in the context of market
predictability. Thus, anticipation of turning points can
become an element of investment strategies.

4. Rotational nature of securities market
dynamics and the problem of balance

If we examine the dynamics of stock exchange indices
in three dimensions, i.e. in space R3

+ = P × Q × T ,
where symbols P , Q and T are used to determine the
value of index, volume and time, respectively, then we
can observe that the behaviour of the stock exchange is
described by a rotary-spiral trajectory. This confirms
to certain degree the hypothesis on the chaotic nature
of financial processes [17–19]. Figure 1 presents a spiral
evolution of the WIG stock exchange index listed on the
Warsaw Stock Exchange. It shows that stock exchanges
rotate around a hypothetical path of balance and the tra-
jectory resembles a line wound around a cone. The axes
of those cones form a complicated, twisting line (often
a broken line), which determines the level of balance in
subsequent periods. As A. Smoluk observes, a rotational
motion is the essence of economics and business cycles
are unavoidable since they result from Newton’s law and
indicate a natural tendency of economic systems towards
equilibrium [20–21].

In the economic system R3
+ = P ×Q×T (index value,

volume, time), vectors of components (pi, qi, ti) ∈ R3
+,

where i ∈ N , subject to demand and supply forces, move
in precession and form rotational trajectories. Those tra-
jectories determine (in appropriate time spans) rotary
quadric surfaces. Examples of rotary quadric surfaces
include: cones, elliptic cones, cylinders, elliptic, hyper-
bolic and parabolic cylinders, paraboloids, one- or two-
sheeted hyperboloids and ellipsoids [22]. All of the above-
mentioned lateral surfaces are regular and smooth sur-
faces. However, the three-dimensional economic vortex,
as shown in Fig. 1, is not a trajectory which could be de-
scribed as regular and smooth. But it certainly should
be claimed that the economic rotational trajectory is
fixed inside the above-mentioned rotary quadric surfaces.
The purpose of model binding of those surfaces is only
to serve as a geometric representation of a natural — ir-
regular “sleeve”, which is constantly woven by rotating
vectors in economics.

Observations of time series in R3
+ = P × Q × T re-

quire a slightly broader discussion of the issue concerning
the precession of the vector with components (pi, qi, ti).
Cones determined by a trajectory in certain time in-
tervals also reveal a tendency to rotate around a cer-
tain hypothetical line [23]. This kinematic phenomenon
resembles a precession movement, which occurs when
torgue with a component perpendicular to the angular
momentum is applied to a body spinning around its axis.
The axis of the body rotation then starts tilting from the

Fig. 1. Three-dimensional rotational trajectory of
WIG index quoted on the Warsaw Stock Exchange, with
truncated rotary quadric surfaces moving in precession
in the period from 1994-04-18 to 2002-04-18 drawn in
space R3

+ = P ×Q× T (index value, volume, and time,
respectively).

vertical position, thus making a movement that draws
a surface in the shape of the lateral surface of a cone.
Precession is responsible for the stability of spinning ob-
jects. Precession can be accompanied by nutation, in
which case additional fluctuations or vibrations of the ro-
tational axis of economic vectors result in sustaining the
rotational movement of the body — in this case, the stock
exchange. The mere fact of a precessive rotation of cones
can be identified with states of general balance, while
the axis of the cone determined by the rotational-spiral
trajectory will be referred to as the temporary balance
axis (observed in the time span in which the cone was
determined). Generally, as an example of the precession
movement, physicists provide the rotational movement
of the Earth, where during the rotations of the planet
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around its own axis this axis tilts from the vertical posi-
tion, as a result of which it draws a cone. The period of
drawing a full galactic cone lasts about 25,600 years [24].
This represents the so-called Platonic year.

As it has been proven in this chapter, market vectors
can be treated as particles of a liquid flow, and conse-
quently, such a description of turbulence leads to a new
definition of market balance. It includes two elements.
A hypothetical line of dynamic balance should be distin-
guished (first element), around which the actual market
vectors (second element) rotate. It must be emphasized
that the dynamic balance line is a virtual construction, as
it is never achieved, and it only provides a frame of refer-
ence for actual movements of economic vectors. Vortices
formed around it can be smaller or larger, but they are
always present, therefore distinguishing laminar and tur-
bulent areas in Fig. 1 is just a matter of convention. If the
stock exchange reached the hypothetical long-term equi-
librium line, it would mean its liquidation, so this line
is a repeller. When a sleeve created by rotary quadric
surfaces in which vectors rotate is of a smaller diameter,
we can talk about quasi-laminar areas, and when this
diameter is larger, we are dealing with turbulent areas.
Examples of quasi-laminar and turbulent areas are shown
in Fig. 1.

5. Explanation of the rotational movement of
market vectors based on the theory of economics

Let us look for a moment at the dynamics of vec-
tor adjustment to economic balance levels. Let us as-
sume that in the economic three-dimensional space, vec-
tors of various components are subject to market adjust-
ment processes. On a plane, those processes are usually
depicted with the use of graphs of polygonal functions
(zigzags), where one of the vector components is always
time. When we increase the dimension of space by one
(by adding one vector component dependent on the pre-
vious one), then in the three-dimensional Cartesian coor-
dinate system we generally obtain a rotational trajectory.
The dependence of vector components R3

+ is very impor-
tant here. An increase or a decrease in the value of one
of the components always involves a decrease or an in-
crease in the value of the other component of the vector.
As examples of systems, in which we can observe such
three-dimensional rotations, we should list the following
relations: output volumes of minerals and their prices,
volumes of mined natural resources and their value, vol-
ume of acquired species of timber and their price, vol-
ume of agricultural produces and food products and their
prices, etc. Equally important are also examples of three-
dimensional rotations observed in the systems where both
vector components are quantitative, e.g. changing pop-
ulations of wolves and deer in the American Yellowstone
National Park, or changing populations of foxes and com-
mon hare in Poland (before and after the introduction of
mass vaccination of foxes against rabies, increase of agri-
cultural mechanization, increase of traffic intensity, etc.).

All of the dynamic systems mentioned above, at the mo-
ment when a graphical three-dimensional analysis of their
dynamics is made, show its rotational nature to the ob-
server. If observations are two-dimensional, then vector
rotations are apparently flat and their shape resembles a
modified cobweb model.

Orthogonal projections of rotational trajectories onto
planes create well-known zigzags seen on time charts rep-
resenting the value of stock-exchange indices and vol-
umes. The three transformations provided below present
orthogonal projections of a rotational trajectory onto
three planes perpendicular to one another.

p : R3
+ → R2

+, p : (P ×Q× T )→ (P × T ) , (11)

q : R3
+ → R2

+, q : (P ×Q× T )→ (Q× T ) , (12)

s : R3
+ → R2

+, s : (P ×Q× T )→ (P ×Q) . (13)
In the first two transformations, p and q, we obtain

graphs of segment-polygonal functions (flat zigzags) and,
as a result of implementing the third transformation, s,
we receive a curve resembling a vortex — spiral.

If we assume that a two-dimensional system of co-
ordinates illustrates values of the stock exchange index
changing over time, then — regardless of the trend pre-
vailing during the observation of the stock exchange —
the chart will show flat zigzags representing a growth or
a decrease of the value of this index. It will also be true
in case of a changing volume. Therefore, we can look at
two different graphs (two different zigzags), which inde-
pendently present the dynamics of changes in the stock
exchange vector in two various systems of coordinates
(in the system of the index value — time or volume —
time).

The observation of stock exchange dynamics as a vec-
tor with two components, i.e. index value and volume, is
very difficult when analysing a large number of listings.
In practice, certain rotational regularities are perceived
only when the number of observations in the index —
volume system is low. In practice, for a large number
of listings, the flat trajectories of the vector index values
and volume components very densely overlap, creating
an indecipherable picture. Perceiving any regularity in
such a picture is simply impossible. The trajectory of
the stock exchange looks substantially different when we
increase by one dimension the space in which we make
our observations. In a three-dimensional system, our flat
trajectories are stretched in time (we can also say that
flat kinematic trajectories are literally detached from the
index value — volume plane), revealing their real, kine-
matically rotational nature [25–26].

An identical visual effect can be achieved when stretch-
ing (along the time axis, situated perpendicularly to the
index value — volume plane) the cobweb model. In such
a case, we create a truncated prism with a tetragonal
basis with a screw line wound on the lateral surface
of the prism. Most probably, at the end of 1920s and
at the beginning of the 1930s, such three-dimensional
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experiments related to literal stretching of the cobweb
mechanism were not carried out by four, presumably
independent, creators and at the same time propaga-
tors of this model, namely: J. Tinbergen, U. Ricci,
H. Schultz and A. Hanau [27–30]. If this was the case,
then the model attempt to explain extrapolating adjust-
ment of cyclic fluctuations of prices and amounts of pro-
duced goods to economic balance levels could already at
that time have been directed towards the issue of three-
dimensional economic vortices. The proposed new def-
inition of economic balance presented in this article is
compatible both with Walras’ hypothesis of the excess
market demand as well as with Marshall’s hypothesis of
excess demand price [31–34].

The proposed new definition of economic balance in-
cludes a virtual broken (or twisting) line, representing a
hypothetical long-term dynamic balance and rotation of
real market vectors around it. The line of long-term bal-
ance is a repeller, since reaching it would mean the death
of the stock exchange. In the three-dimensional Carte-
sian coordinate system, vectors with volume, index value
and time components are constantly subject to an un-
predictable rotational process. Trajectories determined
by this process are irregular economic helices. They are
similar to helices created by particles of flowing liquids
or gases. The economic Reynolds number differentiates
individual market states in view of their complexity.

6. Rotational motion on the stock exchange
and in hydrodynamics

as an example of logical homology

The value and volume of a given asset depend on many
factors, such as the reaction of individual players or entire
communities of investors. Some of them are of an imper-
manent, even speculative nature, while others operate
in the long-term. A three-dimensional analysis of stock
exchange indices and individual shares demonstrates an
unusual, striking similarity, which indicates one type
of prevailing movement. This movement changes loca-
tions of points in space R3

+ = P × Q × T , determining
at the same time a rotational-spiral three-dimensional
curve. The analysis of market dynamics in R3

+ brings
certain physical associations with hydrodynamic models.
The type of movement made by the market in R3

+ is
strikingly similar to the rotational movement of fluids.
If we look at stock market helices in various time scales,
we can quickly notice that rotations of lower time de-
grees (scales) cause rotations in higher scales. In other
words, in three-dimensional stock market kinematics,
vortices (helices) emerging in a micro-scale cause vortices
in higher, meso- and macro scales. This irregular rota-
tional process continues with the assumption that stock
exchange transactions are constantly made. Let us imag-
ine for a moment that each of the specified stock exchange
securities is assigned unambiguously one colour. Observ-
ing in R3

+ = P ×Q× T colourful stock exchange helices
(e.g. in a one-minute scale), we can conclude that chaotic
vibrations of vectors (stock exchange particles) move in

a similar way to air, gas or water particles or of a liquid
of viscosity comparable to the kinematic viscosity of wa-
ter equal to 1 cSt measured at 4 ◦C∗. Kinematic liquid
viscosity expresses the relation of dynamic viscosity of a
given liquid to its density.

Comparison of the stock exchange phenomena to hy-
dromechanical or aerodynamic phenomena is a good ex-
ample of logical homologies, emphasizing the rotation
of particles and shares (or indices) at the stock ex-
change [35]. When stock exchange helices take the shape
of a spiral (logarithmic, hyperbolic or Archimedean), it is
easier to make a short-term forecast concerning the de-
velopment of economic market vectors. Rotational and
spiral graphs confirm that the stock market analogue
of the Reynolds number can be applied in a technical
analysis as a stock-exchange Reynolds warning rate. For
the above reasons, establishing the threshold values for
various types of markets and their thorough analysis
may contribute to an increase in market predictability.
The values of stock market Reynolds warning rate would
determine the moments in which the market transforms
from stable price dynamics into the turbulent dynamics.

Development of an economic equivalent of the
Reynolds number constitutes an important and innova-
tive econophysical achievement, since it confirms the ba-
sis idea of econophysics, according to which physical and
economic objects can have a common theory. This is
a situation described in the language of general system
theory as logical homologies.

7. Verification of the prognostic possibilities
of the stock exchange Reynolds number

We present below two examples of verifying the
Reynolds stock exchange rate for the WIG index quoted
on the Warsaw Stock Exchange. The analysis of time
series for two various periods confirmed the hypoth-
esis of the warning nature of the stock exchange
Reynolds number. In the calculations below, symbol
Re (YYYY-MM-DD) denotes the value of the stock-
exchange Reynolds number as of (YYYY-MM-DD). Ad-
ditionally, the periods for which the stock-exchange
Reynolds number is determined always include the data
from 29 subsequent daily listings at the Warsaw Stock
Exchange. The first period included days from 1994-01-
03 to 1994-03-08, while the second period included days
from 1995-02-16 to 1995-03-28. Tables 1 and 2 present
days on which the Reynolds number reached the max-
imum values. In both periods under examination, af-
ter exceeding the maximum value Re, a clear change of
the trend was observed at the Warsaw Stock Exchange.
In the first period, a bull market on the stock exchange
ended on 1994-03-08, while in the second period it ended
on 1995-03-28.

∗1 cSt — unit of kinematic viscosity, 1 centistokes
1 [cSt] = 1 [mm2/s].
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TABLE I

Reynolds number for WIG index calculated in the period
from 1994-01-03 to 1994-03-08.

Item
Date

(YYYY-MM-DD)
WIG Volume

1 1994-01-03 13,044.8 143,139.5
2 1994-01-04 13,345.5 209,657.6
3 1994-01-06 13,233.9 257,420.0
4 1994-01-10 13,310.8 196,358.0
5 1994-01-11 13,558.0 151,026.1
6 1994-01-13 14,117.5 265,945.0
7 1994-01-17 14,625.1 294,689.3
8 1994-01-18 15,081.6 256,137.0
9 1994-01-20 15,420.8 342,265.0
10 1994-01-24 15,846.3 296,007.5
11 1994-01-25 16,808.6 292,545.0
12 1994-01-27 18,218.3 487,042.0
13 1994-01-31 16,881.0 444,232.0
14 1994-02-01 15,227.9 193,050.5
15 1994-02-03 14,871.5 353,126.0
16 1994-02-07 16,137.5 285,926.0
17 1994-02-08 16,817.9 362,794.0
18 1994-02-10 17,300.2 370,021.0
19 1994-02-14 18,059.9 313,187.0
20 1994-02-15 18,799.3 327,258.0
21 1994-02-17 19,059.2 411,578.0
22 1994-02-21 19,358.3 371,871.0
23 1994-02-22 19,641.0 234,557.0
24 1994-02-24 19,802.2 391,120.0
25 1994-02-28 20,196.0 316,321.0
26 1994-03-01 20,275.6 248,701.0
27 1994-03-03 19,996.9 302,713.0
28 1994-03-07 20,360.7 279,017.0
29 1994-03-08 20,760.3 258,385.0

Arithmetic
means:

16,902.0 298,485.8

Correlation
coefficient

0.4514567 Squares

Volume
variance

6,703,766,931 6,703,766,931 4.49× 1019

Co-variance 91,547,424.2 Reynolds number =
(WIG, volume) 8.38× 1015

tanα = directional
coefficient of

regression function
0.013656117 0.013656117 0.000186

For the data from the first period, lasting from 1994-
01-03 to 1994-03-08, the following Reynolds numbers
were calculated:
Re (1994-03-03) = 1.93× 1016,
Re (1994-03-07) = 1.24× 1016,
Re (1994-03-08) = 8.38× 1015.

The WIG index on 1994-03-03 reached the value of
19,996.9 with the turnover of 302,713. The Reynolds
warning rate had the highest value in the examined pe-
riod of Re (1994-03-03) = 1.93 × 1016. In a subse-
quent day of listings of the WIG index at the Warsaw
Stock Exchange, i.e. 1994-03-07, both the index and the

TABLE II

Reynolds number for WIG index calculated in the period
from 1995-02-16 to 1995-03-28.

Item
Date

(YYYY-MM-DD)
WIG Volume

1 1995-02-16 6,725.9 25,831
2 1995-02-17 6,725.5 27,511
3 1995-02-20 6,599.6 21,347
4 1995-02-21 6,277.2 49,337
5 1995-02-22 6,246.7 28,591
6 1995-02-23 6,419.8 24,402
7 1995-02-24 6,903.4 81,474
8 1995-02-27 6,604.0 26,367
9 1995-02-28 6,447.3 19,211
10 1995-03-01 6,460.2 14,985
11 1995-03-02 6,541.0 15,065
12 1995-03-03 6,698.9 36,089
13 1995-03-06 6,720.0 22,701
14 1995-03-07 6,668.5 25,507
15 1995-03-08 6,662.3 18,079
16 1995-03-09 6,661.6 20,774
17 1995-03-10 6,561.5 23,943
18 1995-03-13 6,521.9 22,127
19 1995-03-14 6,347.9 19,932
20 1995-03-15 6,352.6 16,477
21 1995-03-16 6,282.0 22,344
22 1995-03-17 6,210.3 21,076
23 1995-03-20 6,153.7 16,216
24 1995-03-21 6,069.6 17,609
25 1995-03-22 5,977.1 20,703
26 1995-03-23 5,922.1 20,094
27 1995-03-24 5,949.5 18,501
28 1995-03-27 6,070.5 21,114
29 1995-03-28 5,904.7 24,868

Arithmetic
means:

6,402.9 24,906.1

Correlation
coefficient

0.366918476 Squares

Volume
variance

164,479,148.5 164,479,148.5 2.705× 1016

Co-variance 1,285,733.074 Reynolds number =
(WIG, volume) 1.65311× 1012

tanα = directional
coefficient of

regression function
0.007816997 0.007816997 6.111× 10−5

turnover revealed a growing trend. At the same time,
the Reynolds number decreased to the level of Re (1994-
03-07) = 1.24 × 1016. On a subsequent day, the stock
exchange started a long bear market period. While treat-
ing Re as a warning rate, in this case we can claim that
the warning concerning the change of the stock exchange
trend occurred two days in advance.

In the second period under analysis, lasting from 1995-
02-16 to 1995-03-28, the situation was slightly differ-
ent. The following values of Reynolds warning rate were
obtained:
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Re (1995-03-23) = 1.12249× 1012,
Re (1995-03-24) = 1.34683× 1012,
Re (1995-03-27) = 1.67597× 1012,
Re (1995-03-28) = 1.65311× 1012,
Re (1995-03-29) = 1.74399× 1012,
Re (1995-03-30) = 1.60058× 1012.

In this case, the change in market trend on 1995-
03-28 should be interpreted in a slightly different way.
The value of WIG index and turnover observed on 1995-
03-28 were 5,904.7 and 24,868, respectively. The value of
the Reynolds rate was Re (1995-03-28) = 1.65311×1012.
On subsequent days of listings, both the values of the
WIG index and the turnover were already lower. In the
time period under analysis, the highest value of the stock-
exchange Reynolds number Re (1995-03-29) = 1.74399×
1012 was observed just after the change of the market
growing trend. In this specific case, the nature of the
stock-exchange Reynolds number changed from a warn-
ing to a confirmation. This means that in later periods
the values of the stock-exchange Reynolds number were
much lower than the maximum value falling on 1995-03-
29. Therefore, a change in the market trend of 1995-03-
28 is interpreted in a slightly different way. In this case,
the confirming character of the stock-market Reynolds
number is understood as confirmation of a change in the
existing market trend.

The forecasting possibilities of an economic equivalent
of the Reynolds number show that it stand a chance to
become an important element of investment strategies
applied in the stock market game. Because of its useful-
ness, this tool could be used both by small investors and
institutional investors.

8. Conclusions

This article presents an analysis of the rotational dy-
namics of market movement observed in space R3

+ =
P ×Q×T . Variables in the time model R3

+ are values of
WIG index (P ) and volume (Q), which form spiral stock-
exchange trajectories. The research revealed that the ob-
served three-dimensional market trajectory is common
not only for stock exchange indices, but also for all types
of stocks. It turns out that all two-dimensional graphs
representing price changes in time (or volume changes in
time) emerge as a result of orthogonal projection of a
three-dimensional curve (rotational-spiral trajectory) on
an appropriate plane. The movement made by the mar-
ket in R3

+, is of a rotational-spiral type. The analysis
of three-dimensional stock-exchange models allows the
same time relations between the price and the volume
to be followed. Additionally, it is possible to perceive a
similarity of rotational-spiral curves, created as a result
of stock exchange movements, to the movement which is
created in hydrodynamic models. A similarity of those
two different dynamical systems is not related to factors
that cause this movement, but to the type of the move-
ment itself (logical homology). The value of stock ex-
change number Re (determined, e.g. for a specific index)
can be calculated as a product of variance and the square

of velocity. At the moment when number Re reaches high
values, the movement previously described as laminar de-
velops into a turbulent one. Observed stock exchange ro-
tational and spiral movement, consisting in market tran-
sition from a state of stable dynamics into a turbulent
market, is a rapid change of a laminar movement into
a turbulent movement. Such situations often occur on
financial markets, where events seemingly of little im-
portance have such a strong impact on the reactions of
market participants that a very fast mood change occurs,
resulting in the emergence of stock-exchange turbulence
and a market collapse.
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