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Wemake the comparative study of scaling range properties for detrended fluctuation analysis (DFA), detrended
moving average analysis (DMA) and recently proposed new technique called modified detrended moving average
analysis (MDMA). Basic properties of scaling ranges for these techniques are reviewed. The efficiency and exactness
of all three methods towards proper determination of scaling Hurst exponent H is discussed, particularly for short
series of uncorrelated and persistent data.
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1. Introduction

In last years much effort was put into precise anal-
ysis of scaling range for power laws used to classify
long-term memory properties in complex systems and in
time series [1–7]. This effect in stationary time series xt,
(t = 1, ..., L), is usually attacked with two point auto-
correlation function Cs = 〈∆xt∆xt+s〉, where 〈 〉 is the
average taken from all data in a signal with increments
∆xt = xt+1 − xt. The following scaling law is proven
to be valid for the main model of stationary data with
long term memory, i.e., the fractional Brownian motion
(fBm) [8, 9]

Cs '
1

2
(2− γ)(1− γ)s−γ , (1)

where s is the time lag and the autocorrelation scaling
exponent γ (0 ≤ γ ≤ 1) describes the level of long term
memory in a signal. The two edge values γ = 0 and γ = 1
are related respectively to fully correlated or uncorrelated
(integer Brownian motion) data, leaving space for other
fractional persistent Brownian motion (0 < γ < 1) in
between.

A direct calculation of correlation functions and γ
exponent may suffer for real data from problems con-
nected with noise present in time series or possible non-
stationarities in data (locally changing the quality of
power law in Eq. (1)). Therefore, it is recommended to
reduce these effects not calculating γ directly, but study-
ing the “integrated profile” of the data, i.e., the random
walk xt instead of ∆xt behavior. In the latter case the
scaling Hurst exponent H of the series [10, 11] is mea-
sured. Traditionally, H is defined as the exponent of the
power law relation

var(xt) = 〈x2t 〉 − 〈xt〉2 ' t2H , (2)
where var( ) is the variance calculated for a process of
length t. All methods calculating H are useful in analysis
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of long term memory properties in data since there ex-
ists a simple formula proven for fBm which links γ and
H exponent for large t [12]:

H = 1− γ

2
. (3)

Furthermore, to avoid an artificial bias in xt data caused
by the presence of trend influencing the final outcome
for H, the so called detrending procedure is recom-
mended. Two efficient major techniques were proposed
in literature to do so: detrended fluctuation analysis
(DFA) [13, 14] and detrended moving average analysis
(DMA) [15–18] with variety of their ‘clones’ applicable
also for multifractals [19], where two point autocorrela-
tion functions are not sufficient to describe the variety of
autocorrelation properties in data. Recently DMA was
generalized also to its modified version called MDMA [20]
where the statistics of data points used to calculate the
trend in signal is more balanced than in a case of DMA.

The scaling law from Eq. (1) has been built into DFA
in a form of power law

F 2(τ) ' τ2H , (4)
where F 2(τ) is the averaged squared fluctuation of the
signal around its local trend in time windows of fixed
length τ . To be more precise:

F 2(τ) =
1

N

N∑
k=1

F̂ 2(τ, k), (5)

where

F̂ 2(τ, k) =
1

τ

τ∑
j=1

{
x(k−1)τ+j − Pj,k

}2
. (6)

Here N = [L/τ ] † stands for the number of non-
overlapping boxes obtained after cutting the whole walk
xt (t = 1, ...L) into separate pieces where detrending is
performed with a polynomial trend Pj,k fitted to data
in k-th window box. The sum in Eq. (5) runs from the

†[] means the integer part.
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oldest to newest data in series‡. If p-th order polynomial
is taken for detrending in DFA, the notation DFA-p is
often used.

The DMA method serves the similar power law
F 2
DMA(λ) ∼ λ2H , (7)

but here the fluctuation function (variance of detrended
signal) is defined according to

F 2
DMA(λ) =

1

L− λ+ 1

L∑
t=λ

(xt − 〈xt〉λ)2, (8)

where 〈xt〉λ plays the role of a trend. The latter one is
defined as the moving average of length λ calculated as

〈xt〉λ =
1

λ

t∑
k=t−λ+1

xk. (9)

The DMA method suffers however from diversified
statistics of data points contributing to fluctuation func-
tion F 2

DMA(λ), since only data points xt with t ≥ λ can
be taken into account for determination of the variance
F 2
DMA(λ). Thus the statistics depends here strongly on

the chosen length λ of the moving average. For the par-
ticular choice of λ and L only L−λ+ 1 detrended values
contributes to the F 2

DMA(λ) in the power law determined
by Eq. (7).

This difficulty can be omitted in the modified DMA
technique (MDMA) [20]. Such a modification is based
on the assumption that usually more than L data points
actually exist in a real time series one investigates
and some amount of data stored before the basic se-
ries of length L — although not explored — is ba-
sically also available for a study. The available full
amount of data can therefore be written as the se-
quence {x−λmax

, ..., x−2, x−1, x1, x2, ..., xL}, where λmax

is the maximal scaling range used in particular calcula-
tion of H. Thus one is able to calculate trends (moving
averages) also for those data points where DMA proce-
dure with particular choice of λ simply fails. To be pre-
cise, Eq. (8) is replaced in MDMA by

F 2
MDMA(λ) =

1

L

L∑
t=1

(xt − 〈̃xt〉λ)2, (10)

with the moving average of length λ calculated for t ≥ λ
according to Eq. (9), while modified for 0 < t < λ as

〈̃xt〉λ =
1

λ
(

t∑
k=1

xk +

−1∑
k=t−λ

xk), (11)

where k < 0 means that summation takes into account
also additional data points preceding the basic series.
The power law similar to Eq. (7) is still expected in
MDMA where F 2

DMA(λ) is replaced by F 2
MDMA(λ), i.e.

‡Summation in both directions — along the time axis and back
— is also used to avoid problems with the edge data not entering
any of N time boxes; an average of F 2(τ) calculated in these two
directions is used then.

F 2
MDMA(λ) ∼ λ2H . (12)

An exemplary plot of dependence between detrended
fluctuation function and the size of time box τ (or the
length of moving average λ) is presented in log-log plots
for three discussed methods in Figs. 1, 2 for the sim-
plest case of two different lengths of synthetic uncorre-
lated data (H = 1/2). Already here differences in scal-
ing features between three methods are easy observed.
MDMA seems to be more robust to deviation from scal-
ing for larger λ than DMA. Simultaneously, DFA § ex-
hibits qualitatively worse scaling property than two other
methods — particularly for short time series. This be-
havior should however be examined more systematically
and on the base of strict quantitative investigations.

Fig. 1. Comparison of detrended fluctuations in DFA,
DMA and MDMA versus size of window box (τ) or the
length of moving average (λ) for uncorrelated synthetic
data mimicking integer Brownian motion of length L =
1000 steps. The plots are artificially shifted relative
to each other to make differences between them more
visible.

Fig. 2. Same as in Fig. 1 but for the integer Brownian
motion of length L = 6000 steps.

§DFA-1 has been used within this article unless stated other-
wise.
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2. Methodology and Data Analysis

The precise value of the scaling range for power laws
given by Eqs. (4), (7) and (12) will be a function of avail-
able length of a signal L, i.e., λ = λ(L) and τ = τ(L)
but obviously they will depend also on the accuracy of
fit R2 of the scaling law — usually represented in log-
log scale as a linear regression fit. One expects also that
dependence on the persistency level in data may occur.
Hence, the general analysis of this problem may be quite
complex and should be made step by step with convinc-
ing statistics of synthetically generated time series with a
priori known autocorrelation properties. The persistent
time series of fBm (as the basic model of real data with
long term memory) can be generated using the Fourier
filtering (FFM) algorithm [21]. The scaling behavior of
two point autocovariance function Cs = 〈∆xt∆xt+s〉 can
then be checked qualitatively and quantitatively as in
Ref. [22].

Fig. 3. “Iso-R” curves for DFA-1 — an example of un-
correlated data of length L = 1000 (top) and L = 3000
(bottom). For detailed explanations see the main text.

The starting point are plots like in Figs. 3–4. We may
call them “Iso-R” curves, since they present the rejec-
tion rate in an ensemble of synthetic time series which
are below the specified level of Pearson correlation co-
efficient R2 for linear regression plots made in log-log
scale according to Eqs. (4), (7) and (12). This rejection
rate obviously depends on the maximal scaling range one
takes into account. Hence, the larger scaling range is
assumed the bigger rejection rate occurs at given R2.
One may obtain numerous relations from these figures
to produce dependencies shown in the remaining plots
in Figs. 5–8 from which the principal answers can be de-
duced. Not all plots for variety of possible parameters are
presented here because they look qualitatively similar.

The detailed study of dependencies shown in log-log
scale in Figs. 5–6 convince that the final relationship

Fig. 4. Similar example as in Fig. 3 but for DMA (top)
and MDMA (bottom) applied to integer Brownian mo-
tion of length L = 3000 steps.

Fig. 5. Dependence between scaling range λ and
length of time series L for various levels of autocorre-
lation in data (measured by H exponent). The plots
are drawn for particular choice R2 = 0.98 for two con-
fidence levels CL = 97.5% and CL = 95%. For other
R2 values (not shown) they look qualitatively similar.
The fitting lines are drawn only for edge values H = 0.5
and H = 0.8 to make all remaining dependencies more
readable.
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Fig. 6. Same as in Fig. 5 but for a dependence of scal-
ing range on R2 (u = 1 − R2) for signals of length
L = 103.

between scaling range λ, signal length L and the accu-
racy of fit R2 takes both for DMA and MDMA in fBm
the power law form

λ(L,R2)) = DLη(1−R2)ξ, (13)
where D, η and ξ depend only on the method
(DFA, MDMA) and on the persistency level in data
(see, Ref. [20] for details). Moreover, the fitted values
of these parameters are linear in γ exponent (as well as
in H) in the first approximation. These values are ac-
commodated in Table I and Table II for two confidence
levels (CL = 97.5% and CL = 95%).

A similar consideration for DFA leads to plots like in
Figs. 7–8. On the contrary, they are prepared this time
in linear scale and support the relationship

λ(L,R2) = (AR2 +A0)L+B, (14)
where parameters A, A0 and B also depend only on the
persistency of data and are linear with γ for a wide range
of 0 < γ < 1 [23]. The results of corresponding fit for
these parameters are given in Table III. The above formu-
las obtained for fBm serve the maximal scaling range one
may expect in real time series while the local nonstation-
arities and additive noise may make this range shorter.

However, the knowledge of λ(L,R2) dependence is still
not sufficient for practical use, since we do not know
whether the scaling exponent H is properly reproduced,
even if the scaling law of Eqs. (4), (7) or (12) is firmly
confirmed for given scaling range λ. Therefore, it is worth
discussing the efficiency of all three methods in precise
determination of Hurst exponents when a precisely de-
termined scaling range is taken for calculations.

Fig. 7. Dependence of scaling range λ on data length
for DFA-1 for two particular values of R2 at the confi-
dence level 95%. The plots look qualitatively the same
for wide range of other u = 1−R2 (not shown). Perfect
linear dependence is observed.

Fig. 8. Same as in Fig. 7 but for dependence on u =
1−R2 for various signal lengths.

Many particular approaches can be proposed for a such
project. Here we provide results obtained for the fol-
lowing questions: (a) how will the outcome (measured
value of H exponent in DFA, DMA or MDMA) depend
on the chosen scaling range λ for synthetic fBm series
of data with precisely given autocovariance exponent γ
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(or H) as the input? (b) what is the scaling range of all
three methods, most effectively reproducing this input

value Hin at the assumed confidence level (we assumed
in this approach |H −Hin|/Hin ≤ 1%)?

TABLE I
Results of the best fit for coefficients in Eq. (13) describing scaling range for DMA.
The fit is done for series with various autocorrelation level measured by H exponent
and for chosen two confidence levels CL: 97.5% and 95%. The mean average error
(∆MAE) and the maximal error (∆ME) of a fit is also given.

H \ CL D97.5% η97.5% ξ97.5% ∆97.5%
MAE ∆97.5%

ME D95% η95% ξ95% ∆95%
MAE ∆95%

ME

H = 0.5 0.879 1.062 0.723 1.4% 4.2% 0.961 1.064 0.680 1.6% 3.5%
H = 0.6 0.940 1.050 0.652 1.3% 3.5% 1.078 1.048 0.616 1.3% 3.2%
H = 0.7 1.077 1.035 0.586 1.6% 3.9% 1.189 1.031 0.556 1.4% 3.1%
H = 0.8 1.068 1.022 0.526 1.3% 3.5% 1.299 1.015 0.502 1.3% 3.0%

TABLE II
Same as in Table 1 but for MDMA.

H \ CL D97.5% η97.5% ξ97.5% ∆97.5%
MAE ∆97.5%

ME D95% η95% ξ95% ∆95%
MAE ∆95%

ME

H = 0.5 1.924 1.052 0.866 1.7% 4.6% 2.656 1.053 0.869 1.4% 4.0%
H = 0.6 2.310 1.039 0.808 1.5% 4.1% 3.131 1.037 0.805 1.1% 3.0%
H = 0.7 2.719 1.026 0.751 1.4% 3.4% 3.675 1.024 0.749 1.3% 3.6%
H = 0.8 3.086 1.012 0.694 1.1% 2.8% 4.203 1.013 0.699 1.4% 3.2%

TABLE III
Results of the best fit for coefficients in Eq. (14) found for DFA-1 for series with
various autocorrelation level measured by H exponent and for chosen two confidence
levels: 97.5% and 95%.

H \ CL A97.5% A97.5%
0 B97.5% ∆97.5%

MAE ∆97.5%
ME A95% A95%

0 B95% ∆95%
MAE ∆95%

ME

H = 0.5 –6.02 6.023 –92 1.8% 5.1% –7.00 7.003 –100 1.8% 5.1%
H = 0.6 –6.14 6.151 –95 1.6% 5.2% –7.22 7.230 –105 1.9% 5.3%
H = 0.7 –6.46 6.472 –97 1.9% 4.6% –7.66 7.668 –103 1.8% 4.6%
H = 0.8 –6.88 6.894 –100 1.5% 4.8% –8.12 8.129 –104 2.5% 6.0%

The answers can be deduced from plots shown in
Figs. 9–10 (all plots made for variety of parameter val-
ues are qualitatively similar, so just exemplary depen-
dencies are shown in here). Figure 9 shows the repro-
duced H value as a function of a chosen scaling range
for three discussed detrending methods and for two dis-
tinct lengths of random walk data. Figure 10 indicates
the same dependence for a persistent signal. An answer
to the second problem stated above concerning reproduc-
tion abilities of the input persistency level is given in the
following Figs. 11–13.

One notices from Figs. 9–10 that DFA reproduces H
in the most stabile way but simultaneously underesti-
mates its real value for persistent series. We have checked
that for Hin ≥ 0.7 the outcome value of Hurst exponent
determined within DFA will always lie below Hin and
this discrepancy grows with scaling range. The MDMA
method reproduces input H value less stabile than DFA
but offers better performance in retrieving H exponent
than DMA. The MDMA reproduces H exponent value
better than DMA and worse than DFA for longer scal-
ing ranges — independently on persistence level in data.

DMA and MDMA are not distinguishable for very short
ranges (λ ≤ 10−1L) but both methods slightly overesti-
mateH value for such scaling range. They underestimate
H for λ > 10−1L but this underestimation is more gentle
in case of MDMA, particularly for uncorrelated or weakly
autocorrelated time series.

The most important results can be read from Fig. 11.
These plots show the actual scaling range λ∗ for which
the real value of H (or γ) exponent is strictly reproduced.
It turns out that for all detrending methods the power
law relation seems to be valid

λ∗ = ALm, (15)
where the parameters A and m are found from the linear
fit in double log scale and are collected in Table IV for
four Hurst exponent values H = 0.5, H = 0.6, H =
0.7, H = 0.8. The presented uncertainties in Table IV
correspond to reproduction of H at a very demanding
level |δH/H| . 1%.

These results can be translated into a magnitude of
relative percentage scaling range λ∗/L shown further in
Figs. 12–13, for which the input value of Hurst expo-
nent is retrieved exactly. We may see that for short time



A-64 D. Grech, Z. Mazur

Fig. 9. Comparable reproduction of the Hurst expo-
nent H for integer Brownian motion within DFA, DMA
and MDMA. The results for two length of data are
shown (L = 1000 and L = 6000).

Fig. 10. Same as in Fig. 9 but for persistent synthetic
signal with input scaling exponent value Hin = 0.8.

series (L < 2000) one needs to take longer scaling range
(10%−25%L) in case of DMA and MDMA to do so.
The DFA is much less demanding here — if L > 2000 it is
sufficient to take even less than 10%L to calculate H ex-
actly. The data obtained from higher detrending polyno-
mials (DFA-2, DFA-3) look quantitatively the same and
have not been shown. It confirms the statement made
in [24] that H starts to depend more significantly on the
polynomial order p yet for p > 3.

3. Concluding Remarks

Concluding, we may say that MDMA has always bet-
ter scaling properties than DMA and usually better than

Fig. 11. Power law dependence between scaling range
λ well reproducing the true value of H exponent for dif-
ferent kinds of fractional Brownian motion. DFA, DMA
and MDMA results are compared together. The fitting
parameters of power law dependence are collected with
uncertainties in Table IV.

Fig. 12. Relative percentage scaling range λ∗/L repro-
ducing the input value of H with uncertainty |δH|/H .
1%. The results for different detrending methods
and for uncorrelated or moderately correlated data are
shown.
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Fig. 13. Same as in Fig. 12 but for more persistant
signals (H = 0.7 and H = 0.8). Plots for DFA are
absent since this method does not warranty solutions of
the problem for such persistent data.

TABLE IV
Fit for parameters in Eq. (15) describing scaling range at
which the actual input value of scaling exponentH is well
reproduced. The cross mark indicate that no solution is
available for particular method. The uncertainties shown
here come from the best fit estimation of A and m at
1σ level in plots of Fig. 11.

Method DFA DMA MDMA
parameter log A log A log A
H=0.5 0.240± 0.082 0.190± 0.051 0.343± 0.061

H=0.6 0.982± 0.040 0.180± 0.055 0.325± 0.057

H=0.7 X 0.207± 0.046 0.343± 0.030

H=0.8 X 0.381± 0.042 0.504± 0.043

parameter m m m
H=0.5 0.623± 0.023 0.694± 0.015 0.661± 0.018

H=0.6 0.234± 0.012 0.675± 0.016 0.642± 0.016

H=0.7 X 0.656± 0.013 0.625± 0.009

H=0.8 X 0.548± 0.012 0.518± 0.012

DFA (for short L and high requirements for R2) what
makes it superior in local analysis of series with chang-
ing (i.e., evolving) level of long-term memory. MDMA
is overall somewhere between two other methods — it
wins over DMA but loses with DFA. Only in the excep-
tional case of persistent data DFA is a loser, since MDMA
and DMA are capable to reproduce correctly the input
H value for short scaling ranges (λ ≤ 10−1L), while DFA
method fails to do so.

Furthermore, DFA is most stabile but always under-
estimates the memory level (H) for H ≥ 0.7 and this
discrepancy grows with λ. MDMA is less stabile than
DFA but more stabile than DMA. MDMA reproduces
H exponent better than DMA and worse than DFA for

longer scaling ranges independently on the memory level
in signal. For short data length (L < 2000) DMA and
MDMA allow to take longer scaling range (10%−25%
of L) to exactly retrieve the input memory level. DFA
does not offer this (' 1%−5% of L for H < 0.7 and fails
for H ≥ 0.7).

Finally, a winner is not easy defined. MDMA and
DMA are with no doubts number one for small L and
high R2, DFA is number one for longer series with a
smaller memory level (0.5 < H < 0.7), while an advan-
tage of MDMA is seen for longer signals with substantial
memory level.
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