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Mutual Information–Based Hierarchies
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P. Fiedor∗

Cracow University of Economics, Rakowicka 27, 31-510 Kraków, Poland

A popular method for network analysis of financial markets is a notable part of econophysics research. The net-
works created in such efforts are focused exclusively on linear correlations between stocks. While Pearson’s cor-
relation is the obvious starting point, it would be useful to look at its alternatives as to whether they provide
improvements to this methodology, particularly given Pearson’s correlation coefficient considers only a limited
class of association patterns. We propose to use mutual information–based hierarchical networks, as mutual in-
formation is a natural generalisation of Pearson’s correlation. We estimate mutual information using naive plug-in
estimator as consistent bias is not harmful to this application, however other methods may also be used. We then
transform the mutual information into an Euclidean metric and create minimal spanning trees and maximally
filtered planar graphs. We apply this methodology to Warsaw Stock Exchange for years between 2000 and 2013,
and comment on the differences with the standard methodology, as well as the structural changes on Warsaw Stock
Exchange which the study reveals.

DOI: 10.12693/APhysPolA.127.A-33
PACS: 05.10.–a, 64.60.aq, 89.65.–s, 89.70.–a

1. Introduction

It is a common assumption in economics that prices
change randomly [1]. This assumption is naturally fol-
lowed by an investigation into whether the stochastic
processes for different financial instruments are indepen-
dent, or whether there are dependencies driven by hidden
common economic factors driving these processes. Econo-
physicists [2–4] created a popular method for the con-
struction of hierarchical networks based on single linkage
hierarchical clustering [5–7], to investigate this question.

Different applications of hierarchical clustering use
various similarity measures, but virtually all finan-
cial research uses Pearson’s correlation coefficient and
its derivatives. This is the simplest and most natural
method, and it gives useful results [5, 8, 9]. However,
while these measures of dependence are computationally
efficient and their properties are well understood, they
consider only a limited class of association patterns, such
as linear and monotonically increasing functions. While
Pearson’s rho may be statistically insignificant even when
there is a strong association pattern (for example, when
X ∼ N (0, σ2) and Y = X2, then ρ(X,Y ) = 0 even
though they clearly not independent), from Jensen’s in-
equality we know that the mutual information is equal to
zero if and only if the two random variables under consid-
eration are independent. Thus it satisfies one of the fun-
damental properties desired in a measure of dependence
proposed by Rényi [10], while Pearson’s rho does not.
Since we know that financial data exhibits non-linear pat-
terns (there exits a large body of literature presenting

∗e-mail: Pawel.F.Fiedor@ieee.org

non-linear behaviour of stock markets [11], currency ex-
change rates [12], and market indices [13]), we want to
check whether using a non-linear dependence measure en-
hances the results. This leads us to proposing a method
based on information theory to account for non-linear be-
haviour in the financial markets. From a more pragmatic
perspective, we have compared Pearson’s rho and mutual
information for all pairs in the studied data (described
below), and found many instances where Pearson’s cor-
relation coefficient is equal to zero, while mutual infor-
mation is statistically significant (for example looking at
data for the year 2000, around 30% of the pairs for which
ρ = 0 ± 0.01 (where median deviation from 0 equals 0.1
for the whole dataset) are characterised by mutual infor-
mation above the median for the whole dataset).

To account for the non-linear patterns we have pro-
posed a methodology based on Lempel–Ziv algorithm
for data compression which asymptotically approximates
mutual information rate [14]. In this study we use a sim-
pler methodology, and extend the standard methodol-
ogy by exchanging correlation with mutual information,
which is a more general measure due to its information
theoretic roots [15]. Clustering based on mutual informa-
tion has indeed been successfully performed in other ap-
plications [16–18]. Mutual information can be interpreted
as a measure of how much information the two stud-
ied processes share. Its estimation involves some prob-
lems [19, 20], which are not severe in our application
however [14]. Particularly our method is not sensitive to
consistent bias (thus we use naive plug-in estimator for
simplicity), nonetheless there exist methods to account
for the bias in mutual information estimation [20, 21].

In this paper we simplify the methodology presented
in [14] and use hierarchical clustering based on mutual
information to study interdependencies between finan-
cial instruments. Thus this study modifies the canonical
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methodology of hierarchical clustering for financial data
by exchanging Pearson’s correlation with mutual infor-
mation (estimated using plug-in method). We create min-
imal spanning trees and planar maximally filtered graphs
for Warsaw Stock Exchange for the years between 2000
and 2013. We show how this changes the results by com-
parison with correlation based methodology, and briefly
discuss the resulting structural picture of the Warsaw
Stock Exchange over the years.

2. Similarity measure and networks

The topological structure of financial networks is usu-
ally based on correlation coefficient of log price changes.
To extend the similarity measure to account for non-
linear dependencies we propose to use mutual informa-
tion instead. Mutual information is most often defined in
the context of Shannon’s entropy [22], which is a measure
of uncertainty of a random variable X:

H(X) = −
∑
i

p(xi) log2 p(xi) (1)

summed over all possible outcomes {xi} with respective
probabilities of p(xi).

We define mutual information for two discrete random
variables X and Y as:

IS(X,Y ) = H(X) +H(Y )−H(X,Y ). (2)
Mutual information measures information shared be-
tween the two variables, therefore both linear and non-
linear dependencies, hence using it to describe dependen-
cies on financial markets is natural. Mutual information
is non-negative and IS(X,X) = H(X).

There is a large number of estimators of entropy and
mutual information, a presentation of which can be found
in Refs. [19, 23–26]. In this application we only compare
the measure between pairs, thus we need not worry about
consistent bias, which is the main problem with simple
estimators. Therefore we use the plug-in estimator of en-
tropy for the sake of simplicity. Such estimator is the
entropy of the empirical distribution [19]:

Ĥemp(X) = −
∑
x∈X

Λ(x)

n
log

Λ(x)

n
, (3)

where Λ(x) is the number of data points having value x,
and n is the sample size. Such entropy estimators are
consistently biased downward.

Further, we convert mutual information to an Eu-
clidean metric to have a distance matrix of a fully
connected graph. We use the metric proposed in [7].
The quantity

d(X,Y ) = H(X|Y ) +H(Y |X) =

H(X) +H(Y )− 2IS(X,Y ) (4)
satisfies the Euclidean axioms [7]. But d(X,Y ) is not ap-
propriate for all purposes as IS(X,Y ) and d(X,Y ) are
biased with regards to the size of clusters [27], since mu-
tual information depends on the size of the studied se-
quences. Hence another, relative measure is defined by

being normalised through dividing by the total entropy.
Then the quantity:

D(X,Y ) = 1− IS(X,Y )

H(X,Y )
=

d(X,Y )

H(X,Y )
(5)

is a metric, with D(X,X) = 0 and D(X,Y ) ≤ 1 for all
pairs (X,Y ).

We have introduced the similarity measure and the
distance measure for fully connected graphs, but these
graphs need to be filtered. Here we briefly discuss meth-
ods for producing such filtered networks, which allow for
easier analysis of the most important information within
the system. The distance matrix D containing D(X,Y )
for all studied pairs is defined as above. From D we cre-
ate an ordered list S, in which the distances are listed in
decreasing order. The minimal spanning tree (MST) is
created using the ordered list S. Starting from the pair
with the largest similarity measure D an edge is added
to the graph between elements X and Y if and only if
the graph obtained this way is still a forest or a tree [28].
After all appropriate links are added such graph is always
reduced into a tree [28, 29]. Less constrained graphs can
also be constructed, where the genus is fixed: g = k.
Such graphs are created similarly: from the ordered list S,
starting from the pair with the largest similarity measure,
we add an edge between that pair if and only if the re-
sulting graph can still be embedded on a surface of genus
g ≤ k. Such graphs are less topologically restrictive than
MST, always contains the relevant MST and also addi-
tional loops and cliques [28]. If g = 0 the resulting graph
is planar [30]. Such graph is the simplest extension of the
MST, and is called the planar maximally filtered graph
(PMFG).

For our study we also need a measure of centrality of
a node in a hierarchical network. We use the Markov
centrality, the choice and nature of which is explained in
detail in Ref. [31]. Here we only mention that centrality
is one of the more important metrics in any network, as
central nodes are considered important to the evolution
of the system as a whole.

3. Empirical Application

To apply mutual information–based hierarchical net-
works in practice we use daily log price changes (rt =
ln(pt/pt−1)) for Warsaw Stock Exchange (GPW)† for
stocks listed between the 3rd of Janurary 2000 and the
5th of July 2013. Out of this dataset we choose 357 stocks
which were listed during at least 1000 consecutive days.
Those stocks are then divided into 26 sectors according to
the Warsaw market classification. We divide these time
series into yearly sub-series, and for each year disregard
the stocks with incomplete data (not listed all throughout
given year). Therefore for every year we have a varying
number of studied stocks.

†http://bossa.pl/notowania/metastock/
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For the purpose of estimating the entropy and mu-
tual information these time series are discretised into
four distinct states. The states represent quartiles, there-
fore each state is assigned the same number of data
points. This design leaves out any unnecessary arbi-
trary parameters, which could affect the results and con-
clusions reached while using the data. This and simi-
lar experimental setups have been used in similar stud-
ies [14, 32, 33] and proved to be very efficient [34].
Alternatively one could use permutation entropy on real
valued data. In our experience this approach does not
work well with financial data however.

We estimate the entropy and mutual information for
time series for every company in every studied year
(using infotheo package for R), and on this basis we cal-
culate the similarity measure D, thus allowing us to cre-
ate both minimal spanning trees and planar maximally
filtered graphs. We also calculate Markov centrality for
each node in each created network. For comparison, we
also create the same networks using standard correlation-
based measure, and calculate Markov centrality on this
basis as well.

All the results have been calculated for specific compa-
nies for specific years between 2000 and 2013. The results
are then grouped by sector to allow for easy understand-
ing of the structural changes happening on the Warsaw
market during the studied years.

4. Discussion

As the nature of such large networks is that they are
not easily analysed visually, we have calculated Markov
centrality for each node in each calculated network to
analyse the differences between the studied structures.
In Table we present, in respective columns, Pearson’s cor-
relation coefficients between correlation–based and mu-
tual information–based (i) minimal spanning trees and
(ii) planar maximally filtered graphs, as well as between
minimal spanning trees and planar maximally filtered
graphs based on (iii) correlation coefficient and (iv) mu-
tual information. Minimal spanning trees and planar
maximally filtered graphs are very similar (ρ around 0.8),
which is to be expected since PMFG contains MST and
adds to it only most relevant additional information. But
the correlation– and mutual information–based struc-
tures are also strongly correlated at around 0.6 and 0.7
for MST and PMFG respectively. This shows that the
presented methodology is not completely abandoning the
preceding methodology, but instead it adds the non-
linear dependencies, which has been the intention. It is
worth noting that mutual information has been shown to
perform better at recreating sector structure of the mar-
ket from prices [35] (important feature of this method,
as it cannot be reproduced by simulating a market) than
the approach based on correlation [14]. In this study
the stocks are divided into as many as 26 sectors, which
means that such analysis would run into under-sampling
issues with the number of studied stocks and be un-
reliable. It is therefore not presented, but our studies

of the Warsaw market show that the results would be
similar to these reported for New York’s market [14].

TABLE
This table is based on Markov centrality calculated for
each node in each constructed network. Below we present,
in respective columns, Pearson’s correlation coefficients
between correlation–based and mutual information–based
(i) minimal spanning trees and (ii) planar maximally fil-
tered graphs, as well as between minimal spanning trees
and planar maximally filtered graphs based on (iii) cor-
relation coefficient and (iv) mutual information. Minimal
spanning trees and planar maximally filtered graphs are
very similar (ρ around 0.8), which is to be expected since
PMFG contains MST and adds to it only most relevant
additional information. But the correlation– and mutual
information–based structures are also strongly correlated
at around 0.6 and 0.7 for MST and PMFG respectively.
This shows that the presented methodology is not com-
pletely abandoning the preceding methodology, but in-
stead it adds the non-linear dependencies.

ρ ∼ IS MST ∼ PMFG
Year MST PMFG ρ IS

2000 0.495 0.559 0.793 0.796
2001 0.754 0.873 0.888 0.891
2002 0.680 0.704 0.825 0.878
2003 0.534 0.718 0.808 0.818
2004 0.523 0.692 0.855 0.853
2005 0.472 0.625 0.817 0.763
2006 0.555 0.727 0.886 0.816
2007 0.773 0.640 0.888 0.913
2008 0.606 0.760 0.883 0.925
2009 0.715 0.696 0.895 0.863
2010 0.666 0.732 0.867 0.886
2011 0.422 0.490 0.901 0.819
2012 0.615 0.669 0.823 0.799
2013 0.382 0.433 0.811 0.718

Average 0.585 0.666 0.853 0.838

We also look at the results aggregated into sectors.
Warsaw Stock Exchange groups its stocks into 26 spe-
cific sectors. We present the same analysis for minimal
spanning trees and planar maximally filtered graphs, but
ignore the results for Pearson’s correlation for the sake of
compact presentation. As following from the above, these
would not be drastically different. We analyse average
and aggregate Markov centrality by sector in the studied
years. The average presents the changes relating to the
whole sector, while the aggregate shows more clearly the
impact of a given sector to the whole market, but loses
sight of the changes happening to the whole sector, while
being more dependent on the important stocks.

In Fig. 1a the average Markov centrality by sector for
mutual information-based MST for all studied years is
presented, while in Fig. 1b we have presented the aggre-
gate Markov centrality by sector for the same. The aver-
age is calculated as the mean of Markov centralities for
the stocks belonging to a given sector, while the aggre-
gate is calculated as the sum of Markov centralities for
the stocks belonging to a given sector. Both are presented
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Fig. 1. Average (a) and aggregate (b) Markov centrality by sector for MST based on mutual information. The im-
portance of various sectors clearly changes over time, in accordance with the market history, particularly the history of
problems within these sectors. Smoothing was performed using Forsythe, Malcolm and Moler’s cubic spline interpolation.

Fig. 2. Average (a) and aggregate (b) Markov centrality by sector for PMFG based on mutual information. These
results are very similar to the ones obtained using minimally spanning trees, hinting that it may not be necessary to
use PMFG in such analyses. Smoothing was performed using Forsythe, Malcolm and Moler’s cubic spline interpolation.

as horizon graphs [36] for compact presentation. Partic-
ularly interesting are the aggregate Markov centrality
results. We can see banking sector’s significance rising
around the time of the financial crisis of 2008–2010, rising
significance of the construction sector around the 2007
subprime mortgage crisis (even though the crisis has been
in the US the financial markets are linked well enough
for such conditions to be affecting markets globally),

and rising significance of the IT sector around the dot-
com bubble of 2001. We thus conclude that such analysis
presents valuable informations about the financial mar-
kets. Interestingly, the significance of the banking sec-
tors has fallen steadily hinting that the crisis lead by the
banks is at an end. The significance of construction sec-
tor is on the rise, which may potentially hint what the
analysts’ attention should be aimed at.
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In Fig. 2a the average Markov centrality by sector for
mutual information–based PMFG for the studied years
is presented, while in Fig. 2b we have presented the ag-
gregate Markov centrality by sector for the same. The re-
sults are not significantly different from the above, hence
we will not discuss them in detail. It does seem appar-
ent that it may be sufficient to use the MST given these
results.

5. Conclusions

In this paper we have simplified a methodology for
creating hierarchical networks based on information the-
oretic approach (incorporating non-linear dependencies)
in financial markets presented in [14]. We have obtained
results which are close to the results obtained using
standard methodology based on Pearson’s correlation.
As there are no computational or other problems with
the presented methodology, while the results are similar
or better than those obtained using Pearson’s correlation,
we propose that this method should be used in network
analyses of financial markets. We have also commented
on the apparent structural changes on the Warsaw Stock
Exchange as revealed by the networks created for the
years between 2000 and 2013. It is of particular impor-
tance that the banking crisis seems to be at an end, but
the construction sector is becoming a more significant
part of the market in the last couple of years. Further
studies should look into other measures of non-linear de-
pendency, particularly ones which do not require discreti-
sation of the financial data.
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