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About the Role of Fe-Ions in the Formation of Magnetocaloric
Effect in Ho(Co;_,Fe;), Compounds

M.S. ANIKIN*, E.N. TArRASOV, N.V. KUDREVATYKH, V.H. OSADCHENKO AND A.V. ZININ
Ural Federal University, Mira str. 19, 620002 Ekaterinburg, Russia

A study of crystalline structure, magnetic and magnetocaloric properties of Ho(Co1_,Fez)2 (z = 0.09, 0.12)
intermetallic compounds has been undertaken. Phase composition was controlled by X-ray diffraction analysis.
Magnetic properties were measured within the temperature range 4.2-350 K in magnetic fields up to 7 T. Magnetic
ordering temperatures corresponding to paramagnetic—ferrimagnetic phase transitions were found to be 199 K and
258 K respectively. Temperature dependences of heat capacity for these compounds have been inferred for the
temperature interval 77-340 K. Comparison of magnetocaloric effect (MCE) values determined by direct measure-
ment and by calculation was carried out as well. It was found that significant MCE peak broadening occurs for

higher iron concentration in the compound.
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1. Introduction

RT5 type intermetallic compounds (where R — rare
earth, T = Fe, Co, Ni) or Laves phases with cubic crys-
talline structure have been studied intensively for more
than 3 decades, primarily because of the giant magne-
tostriction values observed for the iron-based alloys [1].

Some RT, alloys based on Co, along with the mag-
netostrictive effect, demonstrate the significant magne-
tocaloric effect (MCE) near the Curie temperature (7¢),
which is applicable for magnetic refrigeration technol-
ogy [2]. Early MCE studies on RCo compounds by direct
measurements were carried out on the samples of binary
HoCos alloy [3].

Later, many authors [4-8] have been carried out
indirect MCE estimations on RCos compounds using
isotherms of magnetization curves and specific heat data.

The RT, type intermetallic alloys are ferrimagnets
with antiparallel orientation of R and T magnetic mo-
ments in case of heavy R. The magnetic behavior and
magnetocaloric properties of these compounds are deter-
mined by competitive exchange interactions within sub-
system (rare earth or 3d-metal) as well as between R and
T subsystems.

Recently, the study of Ho(Ni;_,Fe,)s quasibinary sys-
tem revealed that the nickel substitution by iron leads to
abnormal MCE [9]. This anomaly manifested as MCE
presence in much wider temperature range, contrary to
the many known magnetocaloric materials. Later, a sim-
ilar MCE behavior was observed in Th(Ni;_,Fe;)s [10]
and Er(Coj_gFe;)s [11] compounds.  Authors [12],
investigating structure and magnetothermal properties
of the Th(Co;i_,Fe,)s system also found a significant
magnetic entropy temperature range broadening in the

*corresponding author; e-mail: maksim.anikinQurfu.ru

TbCog.gFeg.1compound compared with that in ThCos.
The neutron diffraction studies carried out in wide tem-
perature range indicated existence of the structural phase
transition (from rhombohedral to cubic with decreasing
temperature) associated with the magnetic phase transi-
tion and broadening of the transition temperature inter-
val when Fe is added.

These results prompted us to undertake the study of
structural, magnetic and magneto-thermal properties of
alloys similar to mentioned above - Ho(Coy_,Fe,)s sys-
tem with low Fe content (x = 0.09, 0.12), which have
not been investigated considered in literature from such
point of view.

2. Experimental details

Ho(Coy_,Fe,)s alloys (z = 0.09, 0.12) were melted in
induction furnace using a quartz crucible with an argon
protective atmosphere. A homogenizing annealing of al-
loys was made in a vacuum furnace at 1220 K for six
hours. Powders of the alloy were obtained by mechan-
ical milling in a mortar with the 200-500 pum fraction
sieved. Phase composition control and crystalline struc-
ture studies were carried out by means of X-ray diffrac-
tion technique (diffractometer Bruker D8 Advance) with
CuK ,-radiation source. For X-ray diffraction patterns
analysis FullProf v.2.05 software was used.

Magnetic phase analysis and magnetization curves
measurements were made using SQUID-magnetometer
MPMS-XL-7 EC (Quantum Design) in the temperature
range from 4.2 K to 350 K in magnetic field up to 7 T.
Heat capacity was measured at zero magnetic field in the
temperature range from 77 K to 340 K.

Direct measurement of the A T—effect was carried out
with the help of a proprietary experimental apparatus
in the magnetic field with 0.46 T magnetic field applied.
To exclude the displacement of powder particles under
study in the process of measurement, these were yielded
into tablets, by mixing powders with epoxy adhesive and
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pressing. To account the influence of epoxy adhesive on
the MCE, in a similar way the reference sample of Gd
metal with the known value of the MCE for the choosen
magnetic field was made [13]. A copper-constantan ther-
mocouple was inserted into this sample. The signal from
it was sent to a DC millivoltmeter, and from there to a
computer.

3. Results and discussion

Analysis of the room temperature X-ray diffraction
data showed that all samples within the study were al-
most single-phase. The 1:2 composition phase had a cu-
bic structure of MgCusy type with F'd3m space group.
Its crystal lattice parameter (a) has been determined
(Table).

Samples were confirmed to contain only 1:2-phase by
thermomagnetic analysis performed in the external mag-
netic field (H) of 0.5 T (Fig. 1). Specific magnetization
values corresponding to the magnetic field yoH = 7 T
(Mg) at 4.2 K and the magnetic moment per formula
unit (Mpy) were calculated from Mg values (in Bohr
magneton — pgp), which are shown in Table. Temper-
atures of magnetic transitions for different samples (Ta-
ble) were determined in the position of the first deriva-
tive’s (dM/dT) peaks on the temperature axis, taken
from the specific magnetization temperature dependen-
cies (M(T)) in the magnetic field, with induction of
0.01 T.
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Fig. 1. Temperature dependencies of Ho(Coi—zFes)2
compounds magnetization measured in the magnetic
field ApoH = 0.5 T. Arrot curves for these compounds
at corresponding Curie temperatures are shown in inset.

Type of the magnetic phase transition was determined
using magnetic criterion proposed by Banerjee [14]. Ac-
cording to that, a positive value of the tangent angle to
the Arrot isotherms at any point in the ferromagnetic
state indicates the second order magnetic phase transi-
tion. Thus, based on the analysis of the experimental
data (inset in Fig. 1) it can be argued that the phase
transition in these compounds is a second order one.

TABLE

Crystal lattice parameters (a), magnetization values in
the magnetic field of 7 T (Ms), magnetic moment of
formulae unit in 7 T (Mpy), and magnetic transition
temperatures (1¢), for Ho(Coi—5Fe,)2 compounds on Fe
concentration (x)

x a J\/le Mry [pB per Tc
[A] [Am®/kg] formula unit] K]
0.09 7.1877 140.4 7.10 199
0.12 7.1908 137.5 6.95 258
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Fig. 2. Temperature dependencies of change of mag-

netic entropy (AS(7T)) in Ho(Coi1—.Fes )2 intermetallic
compounds. Inset I — AS/AST, (T), were ASt, is AS
at Tc, for Ho(Coo.s8Feo.12)2 in different magnetic fields.
Inset IT — ATrwum dependence on the iron concentra-
tion (z) for R(M1—.Fes)2 compounds.

For the calculation of isothermal entropy change(AS),
which can be made using formulae (1) [12,13], the sam-
ples magnetization field dependencies in the external
magnetic fields (0-7) T in the wide temperature range
with a step of 5-10 K were performed

M1 (Tip1, H) — M(T;, H)
ASWH.T) = zz: Tipa—T;
Figure 2 shows the calculated values of AS data for the
change of magnetic field ApgH = 7 T. The figure shows
that with iron concentration increasing, value ATrwuwm,
characterizing the difference between higher and lower
temperatures at half maximum of the —AS(T') peak, in-
creases. Similar trend of ATgpwpn increasing with mag-
netic field is observed for all Ho(Co;_,Fe;)s samples.
AS/AST (T), where ASt, is AS at T for the sample
with = 0.12 at various magnetic fields is shown in the
inset I of Fig. 2. The inset IT shows the values of ATrwum
for R(M;_,Fe,)s compounds, where M = Co or Ni. Data
have been taken from the papers [9-12, 15] and from the
present stady. The figure shows that for all R(M;_,Fe, )9
compounds with low Ni or Co substitutions by Fe, a sig-
nificant increase of AS(T) peak width is observed. For
sample with x = 0.12ATrwaMm = 255 K. Availability of
ferromagnets with MCE in the wide temperature range

AH. (1)
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is essential for potential use in magnetic refrigerants.

Figure 3 shows the temperature dependence of the
magnetocaloric effect AT in Ho(Coy_,Fe, )2 compounds
at various magnetic fields. For calculation of MCE values
(AT a1c), the following formulae were used [13]:

ATca»lc(T) = _ﬁmAsH(T)v (2)

where Cp fr is the heat capacity of the sample material at
the DC magnetic field, ASy is the change of magnetic en-
tropy part. Because of the absence of data on the temper-
ature dependences of heat capacity for the DC magnetic
field of 0.5 T, the calculation of AT, was performed
using the value of Cp g under poH = 0 (inset Fig. 3).
For comparison, in this figure values of AT(T") measured
by direct method (ATgirect way) are shown. It can be
concluded that the calculated values are close to those
obtained by direct measurements. Differences between
calculated and measured AT—effect values may appear
due to not taking into account the magnetic contribu-
tion to the specific heat.
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Fig. 3. Temperature dependences of AT-effect val-
ues in Ho(Co1—5Fe;)2 compounds at various magnetic
fields. Temperature dependencies of heat capacity C} of
Ho(Co1-¢Fez)2 compounds at “zero” external magnetic
field is shown in the inset.

To give more detailed magnetocaloric characteristics
of the studied compounds, a comparison of their relative
cooling capacity (RCP) [12] with the RCP of the similar
compound was made:

Ts
RCP = — / AS(T)dT, (3)
T

where 77 and 75 are the lowest and the highest tem-
peratures on the 7T—axis, corresponding to half-height
maximum of AS(T) dependence. RCP value of the
Ho(Cogp.gsFep.12)2 compound in magnetic field of 5 T is
about 612 J/kg, which is significantly higher than for
the Tb(Cog.97Feg.03)2 compound, where RCP = 299 J /kg
(ApoH =5T) [12].

A significant increase in AS(T') peak width observed
for Ho(Niy_,Fe; )2, Tb(Ni;_,Fe,)s, and Th(Co;_,Fe,)s
compounds according to the authors [9, 10, 12] may be
due to both randomization of rare-earth magnetic mo-
ments orientations in the R sublattice and crystal struc-
ture transition in the mentioned temperature range.

Presented study shows similar behavior of the change
of magnetic part of the entropy in quasi-binary
Ho(Co;_,Fe;)2 compounds. Such behavior of magne-
tothermal properties of magnetic materials is very im-
portant from both practical and scientific points of view.
In order to clarify unambiguously the role of substitute of
base Co or Ni atoms by Fe in R(M;_,Fe, ), intermetallic
compounds with heavy Rare Earth elements, additional
studies are required.
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