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We report on the magnetic and thermal properties of a few TmTX compounds, where T = d-electron metal
and X = p-electron element. In all these ternaries but TmRuGe the thulium magnetic moments order antiferro-
or ferromagnetically at low temperatures. The speci�c heat data con�rms the magnetic orderings and reveals the
in�uence of crystalline electric �eld e�ects.
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1. Introduction

Since many years, rare earth intermetallics R�T�X,
where R = rare earth, T = d-electron and X = p-electron
elements, have been a subject of extensive studies due to
their intriguing magnetic and electrical properties [1, 2].
Amidst plentitude of such phases with various chemical
compositions and stoichiometries, a series of equiatomic
compounds RTX received special attention due to sim-
plicity of their crystal structure and large span in their
physical behaviors [3]. While much information is avail-
able in the literature for the RTX intermetallics with
R = Ce�Er, relatively little is known on their counter-
parts with R = Tm. Most recently, we reported on the
magnetic properties of TmRhGe and TmRhGa, which
were found to order antiferromagnetically below 6.0 K [4]
and 3.9 K [5], respectively. Similarly, we established be-
fore antiferromagnetic ordering in TmNiIn, TmPtIn and
TmAgGe to set at TN = 2.5 [6], 3.4 [7] and 4.2 K [8],
respectively.
Here, we give the �rst account on our on-going studies

on a few other Tm-based equiatomic materials, namely
TmPdIn, TmAgSn, TmAuGe and TmRuGe. The ex-
perimental results are compared with the data previ-
ously obtained for the compounds TmNiIn, TmPtIn and
TmAgGe.

2. Experimental details

Polycrystalline samples of TmTIn (T = Ni, Pd, Pt),
TmAgX (X = Sn, Ge), TmAuGe and TmRuGe were syn-
thesized by arc melting the stoichiometric amounts of the
constituent elements of high purity (3N for Tm and 4N
for the other elements) in titanium-gettered argon atmo-
sphere. Subsequently, the buttons were annealed in an
evacuated quartz tube at 873 or 1073 K for one week.
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Quality of the products was checked by X-ray powder
di�raction (XRD) performed at room temperature using
a powder di�ractometer XPERT-PRO PANalytical with
Cu Kα radiation. The XRD data were analyzed using
the Rietveld-type re�nement program FullProf [9].
Magnetic measurements were carried out in the tem-

perature range 1.72�300 K in magnetic �elds up to 5 T
using a Quantum Design MPMS-5 SQUID magnetome-
ter. Heat capacity studies were made over the interval
0.35�300 K employing a Quantum Design PPMS-9 ex-
perimental platform.

3. Results and discussion

The obtained XRD patterns of TmTX (T = Ni,
Pd, Pt) and TmAgX (X = Ge, Sn) were easily indexed as-
suming a hexagonal crystal structure of the ZrNiAl-type
(space group P 6̄2m). In the case of TmAuGe the hexag-
onal LiGaGe-type unit cell (space group P63mc) was es-
tablished, while for TmRuGe an orthorhombic structure
of the TiNiSi-type (space group Pnma) was found.
The magnetic data for all the investigated compounds

are summarized in Table I. At high temperatures, the
magnetic susceptibility obeys the Curie�Weiss law with
the e�ective magnetic moment close to the free Tm3+ ion
value (7.52 µB) and the paramagnetic Curie temperature
either attaining a small positive value or being nearly
zero kelvin. As an example, the temperature variation
of the inverse magnetic susceptibility of TmPdIn is pre-
sented in Fig. 1. As can be inferred from the insets
to this �gure, the compound orders antiferromagneti-
cally at TN = 2.8 K, and undergoes a metamagnetic-
like phase transition in an external magnetic �eld of
about 0.5 T. Similar results were found for antiferromag-
netic TmAgSn, and previously reported antiferromagnets
TmNiIn [6], TmPtIn [7] and TmAgGe [8]. For all these
compounds the magnetic moment measured at 1.72 K in
a �eld of 5 T is distinctly smaller that the free Tm3+ ion
value (7.0 µB), hence manifesting strong crystalline elec-
tric �eld interactions. In contrast to the above mentioned
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Fig. 1. Temperature dependence of the inverse mag-
netic susceptibility of TmPdIn. Solid line represents the
Curie�Weiss �t. Upper inset: low-temperature χ(T )
data; lower inset: �eld variation of the magnetization
measured at 1.72 K with increasing and decreasing mag-
netic �eld (closed and open symbols, respectively).

ternaries, TmAuGe was found to order ferromagnetically
below TC = 4.1 K, while for TmRuGe no magnetic phase
transition was detected above 1.72 K. Detailed report on
the magnetic behavior in these two compounds will be
published elsewhere.

TABLE I

Magnetic data of investigated TmTX compounds. TN/C

� ordering temperature, θp � paramagnetic Curie tem-
perature, µeff � e�ective magnetic moment, µ � mag-
netic moment at B = 5 T and T = 1.72 K, Hcr � value
of the critical magnetic �eld.

Compound TN/C [K] θp [K] µeff [µB] µ [µB] Hcr [T] Ref.

TmNiIn 2.5 0.4 7.50 4.2 0.4 [6]

TmPdIn 2.65 ≈0 7.88 4.9 0.4 �

TmPtIn 3.4 6.5 7.65 4.5 0.5 [7]

TmAgGe 4.2 12.1 7.37 3.9 0.3 [8]

TmAgSn 4.15 ≈0 7.49 3.8 0.5 �

TmAuGe 4.1 4.0 7.53 3.9 � �

TmRuGe � ≈0 7.52 3.4 � �

The low-temperature dependence of the speci�c heat
of TmPdIn is shown in Fig. 2. It shows a typical λ-
shaped anomaly at TN = 2.65 K. Additionally, a clear
hump in C(T ) is seen below 2 K that can manifest a
subsequent order-order phase transition but it can also
occur due to Schottky-type contribution to the heat ca-
pacity. Further investigations are necessary, preferably
using neutron scattering, to conclude on these two sce-
narios. It should be noted, however, that the entropy
released by TN is only 3.7 J/(mol K), i.e. a fraction
of the value R ln 2 = 5.7 J/(mol K) expected with the
molecular �eld approximation for a doubly-degenerated
ground state. Moreover, the observed jump in C(T ) at

TN is about 6 J/(mol K) that is only half of the value
of 12.47 J/(mol K) appropriate for the e�ective spin
S = 1/2. These �ndings seem to indicate that the elec-
tronic ground state in TmPdIn is a singlet that origi-
nates from the 3H6 multiplet of Tm

3+ ion split in an or-
thorhombic C2v crystalline electric �eld (CEF) potential.
Hence, the magnetic ordering in the compound possibly
has an induced nature and the low-temperature anomaly
in C(T ) likely arises from the CEF e�ect. Similar case
was reported for TmNiAl [10].

Fig. 2. Low-temperature dependence of the speci�c
heat and the magnetic entropy (solid line) of TmPdIn.

As recalled in Table II, even smaller jump in C(T )
at the onset of the ordered state and strongly reduced
magnetic entropy released by TN = 2.5 K were found
for TmNiIn [6]. On the contrary, for TmPtIn [7] and
TmAgGe [8], as well as for the compounds considered
here for the �rst time, i.e. TmAgSn and TmAuGe, the
jumps at the respective TN/C are fairly consistent with
the MFA prediction. Accordingly, the entropy observed
at TN/C is reasonably close to the value expected for a
CEF doublet ground state.

TABLE II

Speci�c heat data of investigated TmTX compounds.
TN/C � ordering temperature, ∆C � jump of the spe-
ci�c heat at TN/C, S � jump of the speci�c heat at TN/C.

Compound TN,C [K] ∆C [J/mol K] S [J/mol K] Ref.

TmNiIn 2.5 3.7 0.9 [6]

TmPdIn 2.65 5.9 3.7 �

TmPtIn 3.5 12 4.2 [7]

TmAgGe 4.2 14 4.2 [8]

TmAgSn 4.15 10 4.0 �

TmAuGe 4.1 10.1 5.2 �

4. Conclusions

All the investigated TmTX ternaries, which crystallize
with the ZrNiAl-type unit cells, are antiferromagnetic
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below the Néel temperature TN ≤ 4.2 K. The hexago-
nal LiGaGe-type structure is adopted by TmAuGe and
this compound orders ferromagnetically at TC = 4.1 K.
In turn, TmRuGe is isostructural with the orthorhombic
silicide TiNiSi and remains paramagnetic down to the
lowest temperatures studied.
For all the TmTX compounds studied, the e�ective

magnetic moment is close to the free Tm3+ ion value,
whereas the moments measured in the ordered state in
strong magnetic �elds are distinctly smaller than the free
Tm3+ ion value. This �nding indicates the important
role played by the CEF interactions. Moreover, it may
suggest noncollinear orderings, which have indeed been
revealed for TmNiIn, TmPtIn and TmAgGe by recent
neutron di�raction experiments [6�8].
At low temperatures, the speci�c heat of the TmTX

compounds is dominated by the magnetic contribution.
The lambda-shaped anomalies near TN/C manifest a con-
tinuous character of the phase transitions. For TmNiIn
and TmPdIn, small magnitude of the jump in the speci�c
heat at TN and reduced magnetic entropy released by TN
hints at induced nature of the magnetic ordering in the
presence of a singlet CEF ground state. For the other
ternaries investigated, the heat capacity data seems to
indicate doubly degenerated electronic ground states.
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