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In this work Monte Carlo simulations with usage of dynamic lattice liquid model are presented, instead of the
widely used direct exchange or vacancy dynamics, to investigate the dynamics of phase separation phenomenon
in spin conserved system with all lattice sites occupied. The dynamic behaviour of domain growth and particle
di�usion is discussed for the modi�ed conserved order parameter Ising model. The dynamic lattice liquid model
dynamics enables non-locally correlated relaxation dynamics and allows to simulate dense systems in absence of
vacancies and parallel treatment of all spins. This approach involves cooperative movement of system elements
enabling observation of the order-disorder phase transition in a system with highly correlated motions. Simulations
were performed on 2D triangular lattice for several investigated temperatures. Presented results include temporal
evolution of domain morphology and di�usion of system elements.
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1. Introduction

Order-disorder phase transition in classic Ising system
has been intensively investigated for many years [1]. Less
attention was put on a case with conserved number of
spins (called conserved order parameter model � COP).
Conserved spin system is usually referred to alloys or bi-
nary mixtures where spinodal decomposition occurs un-
der temperature quench. Rapid quenching below critical
temperature of a single phase binary system (composed
of two spin species) into a two-phase region causes small
(in amplitude) inhomogeneities to evolve into macro-
scopic domains of two di�erent phases. The system,
initially in a homogeneous high-temperature state, be-
comes inhomogeneous due to order�disorder transition.
It is well known from mean-�eld theory [2] that domain
size scales with time as (Lifshitz�Slyozov�Wagner (LSW)
growth law [3]):

R(t) ∼ tx, (1)
with x = 1/3 in the long time limit.
Di�usion of molecules (spins) in the COP models is

usually realized in two ways. The �rst is the Kawasaki
dynamics [4], where direct exchange of two randomly se-
lected neighbouring molecules is allowed. The second is
vacancy dynamics [5], where exchange is possible only
with a neighbouring vacant site. The probability of ex-
change is commonly assumed to follow the Metropolis
rule [6]. The Kawasaki dynamics provides a poor rep-
resentation of di�usion in a real system because it does
not take into consideration the excluded volume condi-
tion. The vacancy model gives an unrealistic physical
behaviour for high vacancy concentration [7]. Single va-
cancy model has been proposed [8] to avoid this problem.
In this work we propose the use of the dynamic lattice
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liquid (DLL) model [9] to simulate the dynamics of order-
disorder transition with highly correlated movements of
molecules, re�ecting super-cooled spin liquids.

2. Simulation method

The dynamics of particles was realized in terms of the
DLL model [9], which has been successfully applied for
various non-equilibrium physical problems like di�usion
limited aggregation [10], evolution of reaction front [11],
polymer dynamics [12], gelation process [13] and prelimi-
nary studies of phase separation in binary system [14].
In this work a comprehensive explanation of domain
growth kinetics and di�usive behaviour in wide temper-
ature range is presented.
In DLL model the molecular system is considered as

an assembly of structureless beads representing spins or
small molecules oscillating around their current positions
with a frequency of attempts to move to the neighboring
lattice sites. The location of beads in space is determined
by lattice structure. In dense system molecules cannot
move separately because all neighboring sites are occu-
pied (excluded volume and local continuity condition).
The translation over a distance larger than the vibration
range is presented as an attempt to move to a neighbor-
ing lattice position. Movement attempts are represented
by a randomly chosen unit vectors assigned to each site,
pointing to the neighboring site.
An example of a random vector �eld on a triangular

lattice with periodic boundary conditions representing
attempts of molecular displacement is shown in Fig. 1.
Cooperativeness assumes that attempts to move can be
successful only when the local sum of vectors for group
of molecules (larger than two) is equal to zero. If not,
the attempt fails and molecules remain in presently oc-
cupied positions. Collisions (situation (1) in Fig. 1), at-
tempts to create a vacant site (situation (2)), and at-
tempts not participating in a closed loops (situation (3))
are rejected. Only vectors contributing to self-avoiding
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closed paths (loops) enable molecules displacement (sit-
uation (4) in Fig. 1). Additionally, movement of ev-
ery molecule in loops have to be accepted in energetic
test with probability given by the standard Metropolis
rule [6]. If the move is rejected the whole loop is im-
mobilized. Accepted moves are performed by shifting
beads along the closed loops, each bead to a neighbor-
ing lattice site. In the long time limit DLL dynamics
leads to a Brownian random walk trajectory for every
molecule, with jumps distributed randomly in time. One
time unit � 1 MCS (Monte Carlo step) consists of few
actions: (i) generation of random vector �eld, (ii) elimi-
nation of all attempts not participating in closed loops,
(iii) elimination of loops where movement was rejected
due to energetic test and (iv) displacement of molecules
along remaining loops by one lattice constant.

Fig. 1. Schematic representation of a one-phase sys-
tem in the DLL algorithm. The vector �eld represents
displacement attempts. The elements illustrate various
local situations � see the text.

Simulations were performed on 2D triangular lat-
tice with periodic boundary conditions and 1282 sites.
The results were thermally averaged over several inde-
pendent runs. At start, an equal number of A and B
spins were randomly distributed. In the �rst time step
interactions were introduced � the energy of the system
was chosen to be in the standard form

E=−(J/kBT )
∑

〈ij〉
σiσj=(2J/kBT )nAB+const, (2)

where the sum extends over the nearest neighbors pairs.
The symbol nAB denotes the number of nearest neighbor
pairs of A�B elements on the lattice, 2J/kBT > 0 is the
energy of the A�B pair (T is absolute temperature, kB

� the Boltzmann constant), and the symbol σ is de�ned
to be +1 for spin A and −1 for spin B.

3. Results

The theoretical value of transition temperature, below
which phase ordering occurs, was �rstly obtained for tri-
angular lattice by Houtappel [15] as 2J/kBTc = 0.5493...
Figure 2 presents system con�guration for 2J/kBT =
0.60 (i.e. below Tc) and increasing number of time
steps. A proceeding phase separation can be clearly
seen. At the beginning clusters of spins are small with
irregular boundaries. After about 103 MCS continuous
network of domains is formed. Size of formed domains

increases nonlinearly with time. A signi�cant number
of minority spins can be observed inside majority phase
domains. After about 108 MCS full system separation is
observed. The real computation time at 108 MCS was ap-
proximately 50 CPUh at 3.7 GHz CPU frequency for sin-
gle temperature run. Lower quench temperature would
result in smoother phase boundaries and lower concen-
tration of minority spins in majority phase. Presented
results are similar to morphologies obtained with other
dynamics [8].

Fig. 2. System con�guration for 2J/kBT = 0.60 after:
(a) 103, (b) 104, (c) 106, and (d) 108 MCS.

The analysis of domain morphology and growth kinet-
ics involves determination of the spherically averaged pair
correlation function [6]. The �rst zero of the pair corre-
lation function is taken as a measure of the average do-
main size R(t). Time evolution of the averaged domain
size R(t) for di�erent temperatures is presented in Fig. 3
with evaluated error bars [16]. An early stage of very
slow growth can be observed until t ≈ 102 MCS. In this
stage the morphology of small domains is almost frozen.
After that one can clearly see the change of the growth
character.
Nevertheless, the theoretical exponent x = 1/3

(Eq. (1)) is not reached even for long times, due to the o�-
set in the growth law caused by the �nite system size. For
t > 108 MCS the growth is stopped because of full separa-
tion. Lower temperature result in slower domain growth
(with similar exponent). In the case of 2J/kBT = 0.40
the growth of clusters is stopped much earlier because
temperature is above the critical and full separation is
not possible.
Precise analysis of the growth law (Eq. (1)) involves

closer examination of the time dependent e�ective expo-
nent xeff computed as a logarithmic derivative of R(t):

xeff = d[logR(t)]/d[log t]. (3)
An example of this exponent is shown in inset in Fig. 3
for 2J/kBT = 0.80 averaged over 20 independent sys-
tem con�gurations. A signi�cant increase of xeff for
t ≈ 102 MCS corresponds to the creation of a continuous
network of both phases. A drop of xeff until 103 MCS
can be explained as stopped growth due to the fact that
the size of the domains is small and every displacement
of molecules requires reorganization of phase interface.
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After 103 MCS the domain size is large enough to enable
moves inside domains and the e�ective exponent starts
to increase towards theoretical 1/3.

Fig. 3. Average domain size (determined as a �rst
zero of the pair correlation function) measured in lat-
tice units as a function of time for di�erent 2J/kBT .
The straight line corresponds to LSW growth exponent.
The inset shows e�ective exponent vs. time.

Fig. 4. Arrhenius plot of the logarithm of the self-
di�usion Dself coe�cient, in a2/MCS units (a � lattice
constant), calculated from mean-squared displacement.

An interesting area in the studies of phase separa-
tion kinetics is the analysis of the di�usive behavior of
molecules. Self-di�usion coe�cients Dself can be ob-
tained using the Einstein equation for equilibrium state

r2(t) = 4Dselft, t→∞, (4)
where r2(t) is the mean-squared displacement. The re-
sults are presented in Fig. 4 in a semi-logarithmic scale

as a function of 2J/kBT below and above Tc. For the
data points above Tc linear �t can be made with a slope
−1.03±0.01. This value, closer to 1 than obtained in [14],
con�rms the well-known Arrhenius-type di�usive behav-
ior with energetic barrier 2J . Self-di�usion coe�cients
increase for temperatures below critical value because in
equilibrium state system is fully separated and di�usion
coe�cients tend back to athermal values. Lower tem-
perature decreases the concentration of minority phase
particles inside domains and the movement of majority
particles is less disturbed. Further lowering of temper-
ature removes more of the minority atoms from the A
and B domains but competitive phenomenon limits the
increase of Dself . The phase interface starts to play a
crucial role in this region � an occasional attachment of
majority particles to the interface con�nes their move-
ment.

4. Conclusions

The dynamic lattice liquid model is applied to simu-
late kinetics of order-disorder transition for the modi�ed
conserved order parameter Ising system corresponding to
super-cooled spin mixtures. Obtained system morpholo-
gies are consistent with other studies. The growth expo-
nent 1/3 seems to be reached asymptotically in the long
time limit. The time dependent e�ective exponent re-
veals local maximum for times between 102 and 103 MCS
corresponding to the formation of the domain network.
The behavior of self-di�usion coe�cients below the criti-
cal temperature is explained by di�erent mechanisms af-
fecting the movement of particles in the equilibrium state.
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