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The e�ect of external magnetic �eld on the transport properties of double quantum dots coupled to normal
and superconducting leads is studied by means of the real-time diagrammatic technique in the sequential tunneling
regime. This device works as a gate-controlled Cooper pair splitter. We focus on the transport regime where
the current is blocked due to the spin triplet blockade. It is shown that external magnetic �eld can modify the
Andreev current and di�erential conductance. In particular, magnetic �eld can suppress the negative di�erential
conductance associated with the triplet blockade.
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1. Introduction

Transport properties of hybrid quantum dots coupled
to superconducting and/or normal leads has recently at-
tracted a lot of attention [1�12]. When the applied bias
voltage is smaller than the superconducting energy gap,
the normal tunneling processes are suppressed, while the
current can �ow due to Andreev re�ection [13]. In partic-
ular, manipulation and control of Cooper paris have re-
cently been demonstrated in double quantum dot (DQD)
systems [14�16]. It was shown that DQDs can be used to
split Cooper pairs, and such process can be conveniently
tuned by gate voltages applied to the dots. Besides the
fact that manipulation and splitting of Cooper pairs is
exciting from the fundamental point of view, it is also of
potential importance for future applications [17].
In this paper we analyze transport properties of DQDs

coupled to superconducting and normal leads, focusing
on transport regime where the tunneling of Cooper pairs
is blocked by enhanced occupation of a triplet state in
DQDs. Since Cooper pair involves two electrons of op-
posite spin, when both dots are occupied by a single elec-
tron with the same spin, the Andreev current becomes
suppressed [6]. Here, we focus on analyzing the e�ects of
external magnetic �eld. Our calculations are performed
by using the real-time diagrammatic technique including
the sequential tunneling processes.

2. Theoretical description

The schematic of considered system is shown in Fig. 1.
It is based on two capacitively-coupled quantum dots at-
tached to a common s-wave BCS superconductor and to
two separate metallic electrodes. Since we are interested
in the low-bias Andreev current, we assume that the su-
perconducting energy gap is the largest energy scale in
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the problem and use the following e�ective Hamiltonian

H = HE +HT +HDQD, (1)

where the �rst term describes noninteracting electrons in

the electrodes, HE =
∑
rkσ εrkc

†
rkσcrkσ, with c

†
rkσ creat-

ing a spin-σ electron with momentum k and energy εrk in
the left/right (r = L/R) lead. The second term accounts
for tunneling processes between DQD and metallic leads

HT =
∑
r=L,R

∑
kσ

Vr

(
c†rkσdrσ + d†rσcrkσ

)
. (2)

Here, Vr denotes the tunnel matrix element between the
dot r and the corresponding lead, which is assumed to be
energy independent, and d†rσ is the creation operator for
an electron with spin σ and energy εrσ in the dot r. The
coupling of the dots to external metallic leads gives rise
to �nite level width, described by, Γr = 2π|Vr|2ρr, for dot
r, where ρr is the constant density of states of lead r. We
assume that the couplings are equal, ΓL = ΓR ≡ Γ/2.
Furthermore, we assumed that the electrochemical po-
tential of superconducting lead is set to zero, while the
potentials of the two normal leads are kept the same and
equal to eV .

Fig. 1. Schematic of a double quantum dot Cooper
pair splitter. Each dot is coupled to its own lead and
the two dots are coupled to a common superconducting
lead.

Finally, the last term of the Hamiltonian describes
the DQD and superconducting lead, in which the super-
conductor degrees of freedom have been integrated out
by assuming in�nite energy gap. It has the following
form [6, 17]
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HDQD =
∑
r=L,R

(∑
σ

εrσnrσ + Urnr↑nr↓

)
+
∑
σσ′

UnLσnRσ′ +
∑

r,r′=L,R

(−1)δrr′ ΓS
2

×
(
d†r↑d

†
r′↓ + dr′↓dr↑

)
, (3)

where nrσ = d†rσdrσ, U is the Coulomb interaction be-
tween the two dots and Ur is the Coulomb energy of
two electrons residing on the dot r. εrσ = ε + σ̃B/2
with σ̃ = 1 for σ =↑ and σ̃ = −1 for σ =↓. Here, B
is the external magnetic �eld expressed in units of gµB

and the dot levels are degenerate εL = εR ≡ ε. The
last, particle-nonconserving term describes the creation
and annihilation of Cooper pairs in the superconductor,
where ΓS is the coupling strength to the superconducting
lead, assumed to be equal for the two dots.
In this paper we are interested in the transport regime

where the Cooper pairs are split and the electrons tun-
nel through the two dots to separate leads. Such pro-
cesses are called crossed Andreev re�ection. To exclude
the processes where the Cooper pair enters the same lead
(direct Andreev re�ection), we set the Coulomb energy
on each dot to in�nity to exclude double occupancy of
each dot, UL, UR → ∞. Then, the double dot is de-
scribed by 9 states, |χ〉, which are the many-body eigen-
states of the Hamiltonian (3). The occupation probabil-
ities of those states and the tunneling current Ir �ow-
ing through the junction r between given dot and metal-
lic lead can be found by using the real-time diagram-
matic technique [19�21]. This technique is based upon
a systematic perturbation expansion with respect to the
coupling strength Γ . Here we consider the lowest order
of expansion, which corresponds to sequential tunneling
processes. Knowing the currents IL and IR, one can cal-
culate the current �owing between the DQD and super-
conductor from the Kirchho�'s law, IS = IL + IR.
The Andreev current IS and the respective di�eren-

tial conductance GS = dIS/dV are shown in Fig. 2 as a
function of bias voltage applied to the two normal leads.
This �gure is calculated for zero detuning of the levels
δ = 2ε + U = 0 and for di�erent magnetic �elds, as in-
dicated in the �gure. In the case of δ = 0, i.e. when the
empty and doubly occupied (with one electron on each
dot) states are degenerate, the Andreev current can be
maximized to reach IS = I0 = eΓ/~, cf. Fig. 2a. First
of all, one can note that in the absence of magnetic �eld
and for negative bias voltage, the Andreev current ex-
hibits typical Coulomb staircase, see Fig. 2a, associated
with consecutive bound states that start taking part in
transport with increasing the bias voltage. At a volt-
age corresponding to a step in the current, the di�eren-
tial conductance exhibits a peak, Fig. 2b. On the other
hand, for positive bias voltage, the current increases and
then suddenly drops to zero. This is due to the fact that
for eV/U >∼ 1/2, the double dot becomes trapped in a
spin triplet state. Since injecting or extracting Cooper
pairs to/from superconductor involves spin-up and spin-

Fig. 2. The Andreev current IS (a) and the corre-
sponding di�erential conductance GS (b) as a function
of bias voltage calculated for di�erent magnetic �elds,
as indicated. The other parameters are: U = 1 (used as
energy unit), δ = 2ε + U = 0, ΓS = 0.5, Γ = 0.01 and
T = 0.01, with I0 = e~/Γ .

down electrons, full occupation of triplet state blocks the
Andreev current �owing through the device. This also
leads to corresponding negative di�erential conductance,
which is clearly visible in Fig. 2b.

In the case of �nite magnetic �eld, the Andreev bound
states can become split and, because of that, the current-
voltage characteristics exhibit more steps, see e.g. Fig. 2
for B/U = 0.2 and B/U = 0.4. Moreover, one can see
that the width of the �rst plateau in the current for pos-
itive voltage becomes decreased with increasing B. An
interesting situation occurs for B/U = 0.4, when IS be-
comes suppressed for whole range of positive bias volt-
age considered in this �gure. Consequently, the e�ect of
negative di�erential conductance is almost absent. More
speci�cally, �nite magnetic �eld changes the range of bias
voltage for which the triplet blockade occurs, such that
for B/U = 0.4 the blockade is extended to the whole
range of eV/U >∼ 0.25, see Fig. 2a, (note that the range
around eV = 0 still corresponds to the Coulomb blockade
regime).

When the detuning of DQD levels is present, the An-
dreev processes become generally decreased. This is be-
cause now there is a di�erence between the energies of
empty and doubly occupied states and it is more di�cult
to form a Cooper pair. The corresponding current and
di�erential conductance are shown in Fig. 3 for δ = 1.
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Also in this case one can see the blockade of the current
due to occupation of the triplet state, which is now visi-
ble for eV/U > 1 in the absence of B. For negative bias
voltage, on the other hand, the current and associated
dIS/dV behave in a rather typical way, with IS vary-
ing monotonously with eV . The e�ect of �nite magnetic
�eld is here clearly visible. First, the region of the triplet
blockade is shifted towards smaller bias voltages with in-
creasing the magnetic �eld, see Fig. 3a. Second, magnetic
�eld splits the levels and additional steps in the current
are present for negative bias. Correspondingly, the di�er-
ential conductance displays then additional peaks, sepa-
ration of which increases with raising the magnetic �eld,
see Fig. 3b.

Fig. 3. The same as in Fig. 2 calculated for δ = 1.

3. Conclusions

In this paper we have analyzed the Andreev current
�owing in double quantum dot based Cooper pair split-
ters in the presence of external magnetic �eld. The cur-
rent �owing through such device exhibits an asymmetry
with respect to the bias reversal and becomes suppressed
for one bias polarization due to enhanced occupation of
the triplet state. We have shown that magnetic �eld
changes the range of bias voltage for which the blockade
occurs. Moreover, it can also suppress the e�ect of neg-
ative di�erential conductance associated with the triplet
blockade.
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