
Vol. 127 (2015) ACTA PHYSICA POLONICA A No. 2

Proceedings of the European Conference Physics of Magnetism, Pozna« 2014

Spin Hall Conductivity of a Two-Dimensional Electron Gas

with Random Rashba Field

A. Dyrdaªa,* and M. Rataja,b

aFaculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Pozna«
cThe Nano-Bio-Medical Centre, Umultowska 85, 61-614 Pozna«, Poland

Spin Hall e�ect in a two-dimensional electron gas with uniform and random components of the Rashba spin-
orbit interaction is considered theoretically. Relaxation time due to scattering on Rashba �uctuations is also
calculated. It is shown that the presence of a uniform component of Rashba coupling not only modi�es relaxation
time, but also suppresses the contribution to the spin Hall conductivity due to random Rashba �eld.
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1. Introduction

Electric �eld or temperature gradient can generate var-
ious spin-related phenomena in systems with spin-orbit
interaction. One of the most interesting phenomena is
the spin Hall e�ect (SHE) [1�3], where an external elec-
tric �eld generates spin current �owing perpendicularly
to the �eld. Consequently, SHE gives a unique possibil-
ity to create pure spin current in nonmagnetic systems,
which in turn can be used for electric manipulation with
orientation of magnetic moments.
In general, Rashba spin-orbit coupling acquires not

only a uniform component, but also a spatially �uctu-
ating term (due to random distribution of dopant ions,
some imperfections of quantum well interfaces etc.) that
contributes to spin and momentum relaxation times, and
also substantially a�ects spin transport. It has been
shown recently that even in the system where Rashba
spin-orbit interaction vanishes on average, the spatial
�uctuations of the Rashba �eld can generate a nonzero
SHE [4, 5]. In this paper we consider a more realistic
case of a two-dimensional electron gas (2DEG) with both
spatially uniform and random components of the Rashba
�eld. We also determine the relaxation time due to the
random Rashba term.

2. Model

Hamiltonian of a two-dimensional electron gas with
Rashba spin-orbit interaction takes the form (we use the
units with ~ = 1)

H =
∑
kk′

Ψ †k

(
k2

2m
δkk′ + α(σxky − σykx)δkk′

+
λkk′

2

[
σx(ky + k′y)− σy(kx + k′x)

])
Ψk′ , (1)

where the �rst term (diagonal in the spin space) stands
for the kinetic part with m being the electron e�ective
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mass, the second term describes the uniform (constant)
part of the Rashba spin-orbit interaction with the Rashba
parameter α, while the last term represents the spatial
�uctuations of the Rashba �eld, which will be treated
perturbatively. The parameter λkk′ describes the ran-
dom Rashba spin-orbit interaction. Spatial average of
this parameter vanishes, 〈λ(r)〉 = 0. However, the cor-
relation function, 〈λ(r)λ(r′)〉 = C(r − r′), is nonzero.
Fourier transform Cq of C(r − r′) takes the form [6]

Cq = |λq|2 = 2π〈λ2〉(2R)2 e−2qR, (2)

where R is the spatial scale of the �uctuations, and
q = k−k′ is the momentum change due to scattering by
�uctuations of the Rashba �eld.
The Green functions, G

R/A
k (ε), corresponding to the

nonperturbative part of the Hamiltonian (1), is a matrix
in the spin space and can be written as

G
R/A
k = G

R/A
k 0 σ0 +G

R/A
k x σx +G

R/A
k y σy, (3)

with

G
R/A
k 0 =

1

2
(G

R/A
k+ +G

R/A
k− ), (4)

G
R/A
k x,y = ±ky,x

2k
(G

R/A
k+ −G

R/A
k− ), (5)

where G
R/A
k± = (ε−Ek±± iΓ )−1, Ek± = k2/2m±αk are

the two electron bands of 2DEG with constant Rashba
spin-orbit interaction, ki (i = x, y) is the i-th component
of the vector k, σn with n = (0, x, y, z) are the unit and
Pauli matrices in the spin space, and Γ = 1/2τ with τ
being the total relaxation time. Both Γ and τ depend on
k, which is not indicated explicitly.

3. Relaxation time

The total relaxation time includes scattering from im-
purities, τi, and scattering from the random Rashba �eld,
τr: τ

−1 = τ−1i + τ−1r . To determine τr we calculate the
self energy in the Born approximation:

ΣR
k =

∫
d2k′

(2π)2
Vkk′GRk′Vk′k. (6)

Here Vkk′ is the perturbation due to random Rashba
�eld, the last term in Eq. (1). Taking into account the
explicit form of Vkk′ and Green function GRk′ , one �nds
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Fig. 1. Relaxation rate (for subband Ek+) due to ran-
dom Rashba �eld plotted as a function of the correlation
length R for indicated values of µ and α. The other pa-
rameters are

√
〈λ2〉 = 1.5×10−12 eVm andm = 0.05m0.

Fig. 2. Relaxation time (for subband Ek+) due to ran-
dom Rashba �eld plotted as a function of parameter α
for indicated values of µ and R. The other parameters
are as in Fig. 1.

that ΣR
k = ΣR

0kσ0. The imaginary part of ΣR
0k determines

the relaxation rate: ImΣR
0k = Γr and Γr = 1/2τr. The

explicit form of Γr at the Fermi level, µ, is given as

Γr(µ) =
1

4π

∫
dqq

∫
dθ
Cq
8

(
4k2F + q2 − 4kFq cos θ

)
× [δ(µ− Ek-q+) + δ(µ− Ek-q−)] , (7)

where θ is the angle between vectors k and q. Note,
the vector k is on the Fermi circle of one of the sub-
bands with the corresponding Fermi wavevectors equal

to
√
m2α2 + 2mµ ∓mα. In the limit of α → 0, the re-

laxation rate Γr reduces to Γr0 given by the expression [7]

Γr0 =
m

2π

∫ 2kF

0

Cq

√
4k2F − q2dq. (8)

The relaxation rate is plotted in Fig. 1 as a function of
the correlation length R for indicated values of the uni-
form Rashba coupling parameter α. One can see that
for long-range correlations Γr increases linearly with R.
When the system is in a dirty limit, R → 0, the relax-
ation rate tends to zero as R2. The relaxation time due
to �uctuations of the Rashba �eld decreases with increas-
ing uniform Rashba coupling parameter α. This behavior
is shown explicitly in Fig. 2, where the relaxation time
is plotted as a function of the parameter α. This �gure

shows that for α > 10−11 eVm, the relaxation time due
to random Rashba �eld is longer in a system with both
uniform and random components of spin-orbit �eld than
in a system with random component only.

4. Spin Hall e�ect

According to the Kubo-Streda formula [8], we write
the spin Hall conductivity as a sum of two components:
σszxy = σszIxy + σszIIxy . The component σszIIxy is the contri-
bution to the spin Hall conductivity, which depends on
states below the Fermi level. This contribution vanishes
in the case considered. Thus,

σszxy = σszIxy =
e

2π

∫
d2k

(2π)2
Tr{ĵszx GR(µ)v̂yGA(µ)}. (9)

The spin current operator is ĵsni = [ĵi, ŝn]+/2e, where
ŝn = σn/2 is the n-th component of the electron spin and

ĵi = ev̂i is the charge current operator with v̂i = ∂H/∂ki
being the electron velocity operator. The perturbation
expansion for the Green functions in the above expres-
sion leads to a series of Feynman diagrams depicted in
Fig. 3, that contribute to the spin Hall conductivity.

Fig. 3. The Feynman diagrams contributing to the
spin Hall conductivity in the dc limit.

Therefore, the spin Hall conductivity can be written as:
σszxy = e

2πTr
∑

kk′(D1+D2+D3). The diagram D1 is the
so-called bare bubble diagram and represents the univer-
sal intrinsic contribution to the spin Hall conductivity [9]:
σsz intxy = e/8π. The diagrams D2 and D3 are associated
with the presence of anomalous velocity vertex and they
are a consequence of the random Rashba �eld.
The spin Hall conductivity can be thus written as

σszxy = e
8π + δσszxy, where δσ

sz
xy = e

2πTr
∑

kk′(D2 + D3).
Writing explicitly contributions from the diagrams D2

and D3 and taking into account that k′ = k − q, we get
the following expression:

Fig. 4. The contribution δσsz
xy as a function of uniform

Rashba coupling parameter α for indicated values of R
and µ = 4 meV. The relaxation rate Γ = 0.5 meV. The
other parameters are as in Fig. 1.
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Fig. 5. The contribution δσsz
xy as a function of the cor-

relation parameter R for indicated values of µ and α.
The relaxation rate Γ = 0.5 meV. The other parame-
ters are as in Fig. 1.

Fig. 6. The contribution δσsz
xy plotted as a function

of the chemical potential. The relaxation rate Γ =
0.5 meV. The other parameters are as in Fig. 1.

δσszxy =
e

2π

∫
dkk

(2π)2

∫
dqq

(2π)2

∫
dθ

∫
dφ

Cq
4m

× [kx(2ky − qy)(t1 cosφ− fyt2)− kx(2kx − qx)

× (t3(fx sinφ− fy cosφ)− t4)] , (10)

where

t1,3 = − i
π

Γ

(
GAk+G

R
k− −GAk−GRk+

)
× [(µ− Ek-q+)δ(µ− Ek-q+)

±(µ− Ek-q−)δ(µ− Ek-q−)] (11)

t2,4 = π
(
GAk+G

R
k− +GAk−G

R
k+

)
× [δ(µ− Ek-q+)∓ δ(µ− Ek-q−)] (12)

and

fx =
(k − q cos θ) sinφ− q cosφ sin θ√

k2 − 2kq cos θ + q2
(13)

fy =
(k − q cos θ) cosφ− q sinφ sin θ√

k2 − 2kq cos θ + q2
. (14)

The corresponding numerical results obtained for δσszxy
are presented in Figs. 4�6. Here, we assume that τ−1r → 0
and the main contribution to Γ , treated here as a con-
stant parameter, comes from scattering by impurities.

In Fig. 4 the contribution to the spin Hall e�ect due
to random component of the Rashba �eld is plotted as
a function of the uniform Rashba coupling parameter α.
The contribution δσszxy tends to zero for su�ciently large
values of the parameter α. Behavior of δσszxy as a func-
tion of the correlation length R is shown in Fig. 5. In
the limit of long-range correlations, the spin Hall con-
ductivity is a linear function of R, but in the dirty limit
δσszxy decreases with R as R2. These results are consis-
tent with the results obtained for 2DEG in the presence of
random Rashba �eld only [4] and for 2DEG with Dressel-
haus spin-orbit interaction and random Rashba �eld [10].
In Fig. 5, in turn, the contribution δσszxy is depicted as a
function of the Fermi level. The spin Hall conductivity
decreases with increasing chemical potential. The sharp
peak appears at the minimum of the lower subband. For
µ = 0 the spin Hall conductivity reveals a singularity.

5. Summary

We have analyzed SHE in a two-dimensional electron
gas with spatially uniform and random components of
the Rashba spin-orbit �eld. The spin Hall conductivity
has an universal intrinsic contribution equal to e/8π, and
an additional term, δσszxy. The contribution δσ

sz
xy strongly

depends on the spatial length of correlations and is sup-
pressed for su�ciently large value of the Rashba coupling
constant α.
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