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Electron tunneling through a double quantum dot side coupled to a pair of leads is examined in �nite-U slave
boson mean �eld approach. Both the two-impurity Kondo regime at half �lling and one-and three-electron Kondo
e�ects are analyzed. Special attention is paid to the case when one of the dots is coupled to ferromagnetic lead and
another to nonmagnetic. Depending on the gate voltage, the same or opposite sign of polarizations of conductance
of the leads is observed.
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1. Introduction

Recently double dot systems (DQD) have been inves-
tigated due to their potential applicability as single elec-
tron transistors or as building blocks of quantum com-
puters (coupled qubits) [1]. Owing to the tunability of
couplings especially rich physics emerges in multiply con-
nected geometries due to the interplay of strong correla-
tions and interference [2�8]. In this paper we study two
tunnel-coupled interacting quantum dots (DQD) side-
coupled to a pair of quantum wires (TDQD) (inset of
Fig. 1b). We focus on the Kondo range, discussing both
atomic and molecular Kondo regimes. In the former case
we analyze the role of singularities of density of states
(DOS) of the leads on Kondo-Fano physics and compare
the results for rectangular density of states with DOS
characterized by Van Hove singularities (VHS). As the
illustrative examples of singular DOS we choose carbon
nanotube and graphene nanoribbon. Coupling of DQD
to magnetic electrodes is another objective of this pa-
per. We show how TDQD can be used in transferring
polarization of conductance.

2. Model

We consider two neighboring quantum dots or adatom
dimer coupled to a pair of leads. The corresponding
Hamiltonian reads:

H = t′
∑
αiσ

(c†iασci+1ασ + h.c.) + ε0
∑
ασ

c†0ασc0ασ

+εd
∑
ασ

f†ασfασ + U
∑
α

nα↑nα↓

+t
∑
σ

(f†1σf2σ + h.c.) + V
∑
ασ

(f†ασc0ασ + H.c.) (1)

The �rst term describes electrons in the electrodes (α =
1, 2), the second represents gate voltage ε0 applied to
these sites of the wires, which are tunnel-coupled to
the dots (�interface sites� labeled as 0α). The third
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and fourth terms describe interacting dots speci�ed by
site energy εd and Hubbard repulsion U , and the last
two terms account for interdot tunneling t and tunnel-
ing to the leads V. Gate voltage allows for the control
of interference conditions. For the rectangular density
of states of electrodes Fano parameter specifying trans-

mission line shape is given by q = ε0
Γ with Γ = πt′2

2D ,
and D is the electrodes half bandwidth. In the �nite-
U slave boson approach [9], a set of auxiliary bosons
eα, pασ, dα are introduced for each dot, which act as
projection operators onto empty, simply occupied (with
spin up or spin down), and doubly occupied electron
states on quantum dot, respectively. The full Hilbert
space has to be restricted to physically meaningful sec-
tor by imposing constraints i.e. completeness relations
e†αeα+

∑
ασ p

†
ασpασ+d†αdα = 1 and charge conservations

Qασ = f†ασfασ = p†ασpασ + d†αdα. These constraints are
incorporated into the Hamiltonian with Lagrange multi-
pliers λ, λασ. In the mean �eld approximation (SBMFA)
the slave boson operators are replaced by their expecta-
tion values and the problem is formally reduced to the
free-particle model with renormalized hopping integrals

Ṽ = Vzασ, t̃ = tz†1σz2σ with |zασ| =
e†αpασ+p

†
ασ̄dα√

Qασ

√
1−Qασ

and

renormalized site energies ε̃ασ = εd + λασ. The sta-
ble solutions are then found from the minimum of the
free energy with respect to the mean values of boson op-
erators and Lagrange multipliers. The current �owing
through the wires is calculated from the time evolution
of occupation numbers of �interface sites�, and is given
by Iασ = e

~ t
′∑

k(G<0ασ,kασ − G
<
kασ,0ασ), where G<0ασ,kασ

are dot-wire lesser Green's functions. The linear conduc-
tance is de�ned by gασ = dIασ

dV |V→0 and polarization of

conductance by PC(α) =
gα↑−gα↓
gα↑+gα↓

.

3. Results and discussion

Figure 1 presents TDQD conductance, occupations
and characteristic temperatures specifying strengths of
many-body correlations for di�erent interdot tunneling.
Fig. 1a shows symmetric (q = 0) conductance with
particle-hole εd = −U

2 symmetry line. For t = 0 the

(487)

http://dx.doi.org/10.12693/APhysPolA.127.487
mailto:krychowski@ifmpan.poznan.pl


488 D. Krychowski, S. Lipi«ski et al.

single dot Kondo e�ects occurring near half �lling pro-
vide a suppression of the transmissions of the wires due
to destructive interference of the ballistic channels and
Kondo channels.

Fig. 1. Linear conductance at the �interface� (0α) site
of the wire as a function of the dot level for various val-
ues of interdot coupling (a) q = 0, (b) q = 0.6. Inset
shows schematic plot of TDQD system. (c) Occupations
of bonding and antibonding orbitals (d) Characteris-
tic temperature specifying position and width of many
body resonance of electrons in antibonding orbital. TA
plays the role of Kondo temperature for strong interdot
coupling in the range of almost completely �lled bond-
ing orbital and single occupied antibonding orbital. In
the weak interdot coupling limit TA can serve as Kondo
temperature in the range of half occupancy. Parameters
used are U/Γ = 3 and V/Γ = 0.25.

On the other limit of empty dots or full occupancy
the couplings between the dots and the wires become
ine�ective and the conductance approaches conductance
quantum due to the ballistic transmission through the
wires. Increase of interdot coupling splits the Kondo res-
onances forming the dips of wire transmissions on both
sides of the Fermi energy what results in an increase of
conductance around half �lling. For large values of inter-
dot couplings (t > V) it is more natural to consider the
attached subsystem as a molecule connected to the wires
with bonding (B) and antibonding (A) orbitals (compare
the increasing di�erenence of occupations of these two
orbitals presented in Fig. 1c). Around half �lling the
bonding orbital is almost fully occupied and antibond-
ing empty. Kondo e�ect does not occur in this case and
transport channel through the molecule becomes more
and more ine�cient with the increase of t, what results
in recovery of high transparency of the wires. Close to
the one or three electron occupancies, however, for large

interdot couplings the additional conductance minima
emerge, which are the manifestations of single electron or
single hole Kondo e�ects. For N = 1 the role of Kondo
active orbital play bonding and for N = 3 antibonding
orbital, the complementary orbital is then empty or com-
pletely �lled (Fig. 1c).

Fig. 2. (a) Comparison of densities of states of T-
shaped system (TDQD for t = 0) with electrodes
characterized by rectangular density of states ((a) and
(b)) and with singular electrodes (c) metallic - zigzag
CNT(24,0) and semiconducting graphene nanoribbon
12-AGNR. The LDOS curves in Figures c,d are plotted
for di�erent values of chemical potential: black solid line
εF = −0.79 (c), εF = −0.5 (d), dotted line εF = −0.56
(c), εF = −0.3 (d), dashed line εF = −0.536 (c),
εF = −0.289 (d) and gray/green solid line εF = 0 (c),
εF = −0.274 (d). Insets show carbon nanotube DOS
and AGNR DOS and Fano asymmetry parameter. Pa-
rameters used are U/Γ = 3 and V/Γ = 0.25 for TQD
and U = 3 eV , V = 0.7 eV and t′ = 2.5 eV for impurities
attached to CNT and AGNR.

The characteristic temperatures de�ned by positions

(ε̃ν , ν = A,B) and the widths (∆̃ν) of correspond-

ing many-body peaks (Tν =

√
ε̃ν

2 + ∆̃ν

2
) determine

Kondo temperatures in the range near single occupancy
of Kondo active orbitals (TA(E) = TB(−E)) (Fig. 1d).
Note that due to the weaker coupling determined mainly
by direct coupling to the leads, atomic Kondo temper-
atures (N = 2) are much lower than molecular Kondo
temperatures (N = 1, 3). Fig. 1b presents asymmetric
conductances characterized by minimum and maximum
on the opposite sides of εd = −U

2 line for the weak in-
terdot coupling and by two minima and maximum for
the strong coupling. Fully destructive and constructive
interference manifesting in entering of the zero transmis-
sion dip or unitary maximum on the Fermi level is only
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observed in the limit of t = 0. For coupled dots (t 6= 0), a
suppression or enhancement of conductance is not com-
plete, due to the additional interdot interference channel.
In the range of single electron or single hole Kondo ef-
fects again interference processes lead to suppression of
conductance with minima located asymmetrically with
respect to electron-hole symmetry line and correspond-
ingly with di�erent values of conductivity. So far we
have considered the case, where interference conditions
change monotonically with the gate voltage. Represen-
tative local densities of states (LDOS) at interacting dots
and at the �interface sites� of the wires are presented on
Fig. 2a and b, for brevity shown only for t = 0 case.
Increase of Fano parameter only slightly perturbs sym-
metry of Kondo resonances of interacting dots, but con-
siderably narrows the Kondo lines. For electrodes with
divergent singularities in the densities of states and con-
sequently singular hybridization, e.g. for carbon nano-
tubes or graphene nanoribbons dramatic changes of both
Kondo physics and interference conditions are expected
when Fermi levels enters VHS.

Fig. 3. Polarization of conductances (a) and magnetic
moments (b) at the dots of TDQD with upper ferro-
magnetic electrode and lower paramagnetic presented
for various values of interdot coupling. Black curves
represent upper electrode and upper dot (α = 1) and
grey/green curves lower (α = 2). Polarization of ferro-
magnetic electrode P= 0.6 and the rest of parameters
as in Fig. 1.

The evolution of densities of states with the shift
of the Fermi level for single impurity side attached to
metallic single wall carbon nanotube (SWCNT) and to
semiconducting graphene nanoribbon (AGNR) are pre-
sented (Fig 2c and d). The e�ective Fano parameter
q = Re[GR0ασ]/Im[GR0ασ] exhibits discontinuous changes
around VHS (inset of Fig. 2c). In the range of constant
density of states far away from VHS (range of linear de-
pendence of q with energy), the resonance peak at im-
purity is symmetric (Fig. 2c), similarly to the previously
discussed cases. Closer to VHS, singularities manifest as
the dips in DOS, the central peak splits, broadens and
gets strongly asymmetric. All these anomalies are the
consequence of enhanced imaginary part of hybridization
and a jump from positive to negative values of the real
part of hybridization. In close proximity to singularities,
however, the presented results should be treated with

caution only as visualization of tendencies, due to a break
of applicability of SBMFA in the range of divergent self-
energy [10]. For system with the gap (AGNR) delta-like
structures are observed at the band edges, which extend
into the gap for εF moving very close to the edge. They
re�ect the new poles of the impurity Green's function ly-
ing on the real axis, and these structures are essential in
order to satisfy the sum rules. Wide tunability of DQDs
build into an electric circuit with magnetic electrodes can
be also exploited in spintronics. Figure 3a shows the ex-
ample of transfer of spin polarization of conductance be-
tween ferromagnetic and paramagnetic wires. Depending
on the gate voltage the induced spin polarization of con-
ductance (PC) of the paramagnetic lead can be of the
same sign as PC of ferromagnetic lead (single dot Kondo
regime) or opposite (molecular Kondo regime). Fig. 3b
signals also the possibility of gate control of orientations
of magnetic moments of the dots, but to get a deeper
insight into this problem within slave boson formalism it
is indispensable to introduce an extra antiferromagnetic
interdot exchange interaction in the model [11].
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