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We provide a heuristic derivation of the “Inverse Edelstein Effect” (IEE), in which a non-equilibrium spin
accumulation in the plane of a two-dimensional (interfacial) electron gas drives an electric current perpendicular to
its own direction. The drift-diffusion equations that govern the effect are derived and applied to the interpretation
of recent experiments. A brief analysis based on the Kubo formula shows that the result is valid also outside the
diffusive regime, i.e. when spin and momentum relaxation become comparable.
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1. Introduction

A recent experiment [1], in which by means of spin
pumping a non equilibrium spin polarization is created at
the interface of a silver-bismuth hybrid system, has made
possible to efficiently convert spin into charge. This phe-
nomenon could be accounted for by the Rashba spin-orbit
coupling (SOCQC) existing at the interface. According to
this interpretation, the mechanism at play is the IEE [2],
also known in semiconducting systems as spin-galvanic
effect [3], for which we have given a microscopic the-
ory elsewhere [4]. Here we provide an alternative heuris-
tic derivation, which elucidates various physical aspects
characterizing this effect.

We consider a two-dimensional electron gas (2DEG)
with Rashba SOC and impurity scattering. The Hamil-

tonian reads
2

H= 2= +a(p,0" —pso”) +V(a), (1)
where p = (pg,py) is the momentum operator, o =
(0%, 0Y,0%) the vector of Pauli matrices with « the SOC
strength. Finally, V() is a random function with vari-
ance (V(z)V(z')) = (2rNo7)~16(z — 2'), mimicking the
breaking of translational invariance due to the imperfec-
tions of the host lattice. In the above Ny = m/27 is
the density of states in the absence of both SOC and im-
purity scattering with m the effective electron mass (we
are using units such that # = 1). The parameter 7 has
the physical meaning of an inverse scattering rate due to
the interaction with the impurities. When a = 0, Hamil-
tonian (1) is the standard minimal model for electrical
conduction in metallic diffusive systems characterized by
a Drude conductivity op = 2e2NoD, with D = v%7/2
being the diffusion coefficient expressed in terms of 7 and
the Fermi velocity vp.

At fixed momentum p, the electron spin operator S =
o /2 obeys the precession equation
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ds®
dt

= 2ap €gpe (ﬁ X 2)bSC, (2)

€qbe being the Ricci tensor. Due to impurity scattering,
momentum relaxes over a time 7, which is short com-
pared to the typical times controlling the spin dynamics.
By integrating Eq.(2) over the time 7, one gets for the
average value of the S* component

S*(r,p) = 2ap7p,S¥(0, p), (3)
SY(0,p) being the initial polarization along the y direc-
tion of electrons with momentum p. As a consequence
there will be a spin current J; (p) associated to the elec-
trons with momentum p

2 _ Dy _
Jy (T7p) - EUS (T,p) -

2

2am (%) ﬁf/TSy(O,p). (4)
The total contribution to the spin current is obtained by
summing over all momenta and the result depends on
the initial polarization. By assuming that the initial po-
larization is due to different chemical potentials p4 for
electrons having their spin parallel (antiparallel) to the
positive y axis, we write

§9(0,) = 5 [F(ep — 14) — Flep — )]

1
~ —iaspf(gp = (bt + p-)/2)(pg — p). (5)
By defining the total spin density S¥ and spin current J;
as

d?p
Y — y
5= [ s 0.p) ©
. ’p .
Jy _/(2W)2Jy(7—7p) (7)
we obtain
J, = D2amsSY. (8)

In obtaining Eq.(8) we have taken out of the integral in
(7) the factor (p/m)? ~ v} thanks to the factor 0., f(ep)
which differs from zero only at the Fermi surface. By
repeating the reasoning for an initial polarization along
the x direction, we may write the general result

Ji = cape DAYSS, (9)
where the tensor A¢ has as non vanishing components
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only A7 = 2ma = —AY. Eq.(9) may be interpreted as a
diffusive current in spin space. To see this, let us rewrite
Hamiltonian (1) as

1 2 1 a _a

H=—(p+A), A_za:2A o,

(A%); = Af, (10)
where we have rewritten the SOC in terms of a spin-
dependent vector potential with spin components A® and
neglected the constant term A2?/2m = ma?. By requir-
ing the local gauge invariance of the Hamiltonian (9) un-
der the SU(2) group of transformations, one is directly
led to define the covariant derivative

(V;0)* = 9;0 — €44 AL0°, (11)
when acting on an observable O%, J; being the standard
space derivative.t Eq.(9) can be rewritten then allowing
also for the standard diffusion due to the space derivative
of the spin density

J* = —D(V;8)°. (12)

(2

The introduction of the SU(2) vector potential can
be further motivated by showing how, as a consequence,
one obtains the well known mechanism of D’yakonov-
Perel’ spin relaxation (DPSR). By requiring the conti-
nuity equation for the spin density in terms of covariant
derivatives one has

S = —(Vii)*, (19
1S = —0;J — Deap.AD;S¢
_(Eabc)Q(A?)QDSa’ (14)

where in going from the first to the second line we used
Eqs.(11-12). One then obtains the well known DPSR
1/mop = (2ma)?D for S®Y and 2/mpp for S*. It is
worthwhile to recall that the DPSR arises as a conse-
quence of the collisions with the impurities. During the
time 7 between two collisions, the electron spin precesses
by an amount 6 ~ app7. If §® is small, the spin un-
dergoes a diffusive motion. mpp is the time at which the
total precession after N = 7pp/7 scattering events be-
comes of order unity yielding Tpp ~ (a?p%7)~! in agree-
ment with (14). This justifies the use of the scattering
time as the smallest time over which integrate the preces-
sion equation (2), if the condition app7T < 1 is satisfied.
Hence the heuristic derivation of the expression (12) for
the diffusive current in terms of the covariant derivative
associated to the the SOC induced SU(2) field is in per-
fect agreement with the standard physical picture of the
DPSR and, moreover, with more technically rigourous
microscopic derivations [5-7].

A further consequence of adopting the language of the

tUnder a SU(2) transformation U = exp(i¥), invariance of the
Hamiltonian requires that the vector potential transforms as A —
UAUT +U(pUt). For infinitesimal ¥, one has A — A —i [A, U] —
i(p¥). After using the expansion in terms of Pauli matrices for
A as given in (10), a similar one for ¥, one obtains the definition

(11).

SU(2) gauge potential is the appearance of the associ-
ated SU(2) magnetic field B =) B%c®/2 defined as

1 . a
B? = §5ijk (@AZ — 8;«4‘} +1 [Aj, Ak} ) . (15)

Hence, even though the SOC vector potential of Eq.(10)
is independent of space and time, it yields a non-zero field
with only non vanishing components B? = —(2ma)?.
This field gives rise to a Lorentz-like force acting in oppo-
site way for electrons with opposite z component of the
spin. As a result charge and spin currents, flowing per-
pendicularly to each other, are coupled in much the same
way as charge currents are in the ordinary Hall effect:

Bzt Bit
2m 2m

Jy=2=Jl Jh= Jy,
where JiT ) are the number currents for electrons with
up and down spin along the z axis. All this leads to the

addition of a further term in the spin current (12)
Jia = —D(VZ'S)U' - Eijagjja (16)

with the spin Hall angle ¥ = ma?7 and e > 0 the unit
charge. This last term is responsible for the spin Hall
effect. The charge current can be written in a similar
way as

Ji = =D0;(—en) — gijadey ], (17)
n being the electron density. In the presence of an exter-
nal electric field one must add the standard drift terms
on the expressions for both the charge and spin currents.
Since we are not interested here in such a case, we do not
include them to keep our expressions as simple as pos-
sible. Together with the obvious continuity equation for
charge, Eqs.(14), (16)—(17) are all we need to discuss the
coupled dynamics of spin and charge, provided we add a
term responsible for the initial non equilibrium spin po-
larization. To understand the origin of a non equilibrium
spin polarization we assume a time-dependent magnetic
field B(t) coupling linearly with the spin density S®. By
using linear response theory we may write

55°(t) = / Tyt — ) B, (18)

X(t) being the generalized spin susceptibility. The ordi-
nary static spin susceptibility is given by the zero fre-
quency Fourier transform of x(t)

Xo = /_OO dt’x(t —t'). (19)

The non equilibrium spin polarization is obtained by sub-
tracting from §5%(¢) the instantaneous spin polarization
0Sequi(t) = xoB“(t). By using Eqs.(18) and (19) the rate
of change of the non equilibrium spin polarization reads

d a a d > !/ a (4!
GOS0 —astu(0) = 3 [ ar(me)

—B*(t))x(t —t') ~ =8, B*(t)x0- (20)
Hence, by assuming a magnetic field varying in time at a
constant rate 0; B = BY along the y axis, we may write
the continuity equation for the non equilibrium spin den-
sity S® = 65%(t) — 052 ;(t) in the presence of a steady

equi



456 R. Raimondi, Ka Shen, G. Vignale

spin injection
08Y = —xoBY — L ogv, (21)
TDP
In the absence of any external field breaking translational
invariance, we have neglected the space derivative term
appearing on the left hand side of Eq.(14).

In the presence of a steady-state spin injection along
the y axis, by using Eqs.(16-17) and (21), we get the
charge current induced along the = axis

Jo = (—4ey)(2amD)(mopx0)(—BY) =

—eaNyTBY, (22)
having included the Bohr magneton and the gyromag-
netic ratio in the definition of the magnetic field so that
Xo = —No/2. Eq.(22) is the the mathematical expression
of IEE, whereby a charge current is induced by a non
equilibrium spin polarization. We notice that the DPSR
time 7pp has dropped out from the final expression of
the Edelstein conductivity oigg = J./BY = —eaNyT.
This is because, as the derivation of Eq.(4) has shown,
the precession which generates the out-of-plane spin den-
sity occurs during the time between two successive colli-
sions. The longer DPSR time mpp controlling the value
of the steady-state spin injection, SY = —71ppxoBY, is
compensated by the fact that the coupling between spin
density and spin current develops over longer time and
length scales as shown in Eq.(8), which can also be writ-
ten as J; = (Lso/mop)SY, Lso = (2ma)~' being a
typical length scale associated to the SOC. Finally, the
spin Hall angle controlling the conversion of the gener-
ated spin current into the charge current can be written
as v ~ (ar)/Lso, thus explaining how in the final re-
sult (22) only the length scale ar remains. This suggests
that Eq.(22) is actually valid beyond the diffusive regime
where appT < 1. This can be checked by computing
the Kubo expression for oigg, whose evaluation is briefly
sketched. The conductivity for the IEE reads

- QY
o i (5T
w—0 1W
e d?p rOY 24
_ T 2

or | @2n) r{JG —G ] (23)
where the retarded Green function is G® = GEo® +
GRo® + Gliov, GE = (GR + GR)/2, Gfy = (p x
2)(GE — GR)/2, and G} = (w — ey + i/27)7}, with
e+ = p?/2m + ap the eigenvalues of the Hamiltonian

(1). Similar relations exist for the advanced Green func-
tion G4. The scattering time 7 enters via the self-
consistent Born approximation of the impurity technique.
The charge current vertex J, = p,/m does not contain
anomalous contributions due to vertex corrections cancel-
lations [8]. Following the methods of Ref. [8] one obtains

p (GG - GEGA) =

IIEE = 8Tm /
—eNpar, (24)

thus confirming the validity of the result (22) even be-
yond the diffusive regime. The expression (22) can be
further extended to include the effect of SOC from the
impurities [4] as well as from bulk asymmetry of the Dres-
selhaus type. We do not consider these extensions here.
To make contact with the experiment [1], we notice that
the steady state spin injection, S¥ = onBy must be re-
placed by the injected spin current density JY (polarized
along the y direction). Hence, Eq.(22) can be written as
Ji/(=2eJY) = ar = Mgg, where the measured length
is Migg = 3 A. From the measured Fermi wave vector
in a silver-bismuth interface [9], kr ~ 0.2 A=' one es-
timates akpT ~ 1 at the border of the diffusive regime,
but within the domain of validity of the present theory.
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