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Inverse Edelstein E�ect: an Heuristic Derivation
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We provide a heuristic derivation of the �Inverse Edelstein E�ect� (IEE), in which a non-equilibrium spin
accumulation in the plane of a two-dimensional (interfacial) electron gas drives an electric current perpendicular to
its own direction. The drift-di�usion equations that govern the e�ect are derived and applied to the interpretation
of recent experiments. A brief analysis based on the Kubo formula shows that the result is valid also outside the
di�usive regime, i.e. when spin and momentum relaxation become comparable.
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1. Introduction

A recent experiment [1], in which by means of spin
pumping a non equilibrium spin polarization is created at
the interface of a silver-bismuth hybrid system, has made
possible to e�ciently convert spin into charge. This phe-
nomenon could be accounted for by the Rashba spin-orbit
coupling (SOC) existing at the interface. According to
this interpretation, the mechanism at play is the IEE [2],
also known in semiconducting systems as spin-galvanic
e�ect [3], for which we have given a microscopic the-
ory elsewhere [4]. Here we provide an alternative heuris-
tic derivation, which elucidates various physical aspects
characterizing this e�ect.

We consider a two-dimensional electron gas (2DEG)
with Rashba SOC and impurity scattering. The Hamil-
tonian reads

H =
p2

2m
+ α(pyσ

x − pxσy) + V (x), (1)

where p = (px, py) is the momentum operator, σ =
(σx, σy, σz) the vector of Pauli matrices with α the SOC
strength. Finally, V (x) is a random function with vari-
ance 〈V (x)V (x′)〉 = (2πN0τ)−1δ(x− x′), mimicking the
breaking of translational invariance due to the imperfec-
tions of the host lattice. In the above N0 = m/2π is
the density of states in the absence of both SOC and im-
purity scattering with m the e�ective electron mass (we
are using units such that ~ = 1). The parameter τ has
the physical meaning of an inverse scattering rate due to
the interaction with the impurities. When α = 0, Hamil-
tonian (1) is the standard minimal model for electrical
conduction in metallic di�usive systems characterized by
a Drude conductivity σD = 2e2N0D, with D = v2F τ/2
being the di�usion coe�cient expressed in terms of τ and
the Fermi velocity vF .

At �xed momentum p, the electron spin operator Ŝ =
σ/2 obeys the precession equation
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dSa

dt
= 2αp εabc (p̂× ẑ)bS

c, (2)

εabc being the Ricci tensor. Due to impurity scattering,
momentum relaxes over a time τ , which is short com-
pared to the typical times controlling the spin dynamics.
By integrating Eq.(2) over the time τ , one gets for the
average value of the Sz component

Sz(τ,p) = 2αpτp̂yS
y(0,p), (3)

Sy(0,p) being the initial polarization along the y direc-
tion of electrons with momentum p. As a consequence
there will be a spin current Jz

y (p) associated to the elec-
trons with momentum p

Jz
y (τ,p) =

py
m
Sz(τ,p) =

2αm
( p
m

)2
p̂2yτS

y(0,p). (4)

The total contribution to the spin current is obtained by
summing over all momenta and the result depends on
the initial polarization. By assuming that the initial po-
larization is due to di�erent chemical potentials µ± for
electrons having their spin parallel (antiparallel) to the
positive y axis, we write

Sy(0,p) =
1

2
[f(εp − µ+)− f(εp − µ−)]

≈ −1

2
∂εpf(εp − (µ+ + µ−)/2)(µ+ − µ−). (5)

By de�ning the total spin density Sy and spin current Jz
y

as

Sy =

∫
d2p

(2π)2
Sy(0,p), (6)

Jz
y =

∫
d2p

(2π)2
Jz
y (τ,p) (7)

we obtain
Jz
y = D2αmSy. (8)

In obtaining Eq.(8) we have taken out of the integral in
(7) the factor (p/m)2 ≈ v2F thanks to the factor ∂εpf(εp)
which di�ers from zero only at the Fermi surface. By
repeating the reasoning for an initial polarization along
the x direction, we may write the general result

Ja
i = εabcDA

b
iS

c, (9)
where the tensor Aa

i has as non vanishing components

(454)
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only Ax
y = 2mα = −Ay

x. Eq.(9) may be interpreted as a
di�usive current in spin space. To see this, let us rewrite
Hamiltonian (1) as

H =
1

2m
(p+A)

2
, A =

∑
a

1

2
Aaσa,

(Aa)i = Aa
i , (10)

where we have rewritten the SOC in terms of a spin-
dependent vector potential with spin componentsAa and
neglected the constant term A2/2m = mα2. By requir-
ing the local gauge invariance of the Hamiltonian (9) un-
der the SU(2) group of transformations, one is directly
led to de�ne the covariant derivative

(∇iO)a = ∂iO − εabcAb
iO

c, (11)
when acting on an observable Oa, ∂i being the standard
space derivative.� Eq.(9) can be rewritten then allowing
also for the standard di�usion due to the space derivative
of the spin density

Ja
i = −D(∇iS)a. (12)

The introduction of the SU(2) vector potential can
be further motivated by showing how, as a consequence,
one obtains the well known mechanism of D'yakonov-
Perel' spin relaxation (DPSR). By requiring the conti-
nuity equation for the spin density in terms of covariant
derivatives one has

∂tS
a = −(∇iJi)

a, (13)

∂tS
a = −∂iJa

i −DεabcAb
i∂iS

c

−(εabc)
2(Ab

i )
2DSa, (14)

where in going from the �rst to the second line we used
Eqs.(11-12). One then obtains the well known DPSR
1/τDP = (2mα)2D for Sx,y and 2/τDP for Sz. It is
worthwhile to recall that the DPSR arises as a conse-
quence of the collisions with the impurities. During the
time τ between two collisions, the electron spin precesses
by an amount δΦ ∼ αpF τ . If δΦ is small, the spin un-
dergoes a di�usive motion. τDP is the time at which the
total precession after N = τDP/τ scattering events be-
comes of order unity yielding τDP ∼ (α2p2F τ)−1 in agree-
ment with (14). This justi�es the use of the scattering
time as the smallest time over which integrate the preces-
sion equation (2), if the condition αpF τ � 1 is satis�ed.
Hence the heuristic derivation of the expression (12) for
the di�usive current in terms of the covariant derivative
associated to the the SOC induced SU(2) �eld is in per-
fect agreement with the standard physical picture of the
DPSR and, moreover, with more technically rigourous
microscopic derivations [5�7].

A further consequence of adopting the language of the

�Under a SU(2) transformation U = exp( iΨ), invariance of the
Hamiltonian requires that the vector potential transforms as A→
UAU† +U(pU†). For in�nitesimal Ψ, one has A→ A− i [A,Ψ]−
i (pΨ). After using the expansion in terms of Pauli matrices for
A as given in (10), a similar one for Ψ, one obtains the de�nition
(11).

SU(2) gauge potential is the appearance of the associ-
ated SU(2) magnetic �eld B =

∑
a Baσa/2 de�ned as

Bai =
1

2
εijk

(
∂jA

a
k − ∂kAa

j + i [Aj , Ak]
a)
. (15)

Hence, even though the SOC vector potential of Eq.(10)
is independent of space and time, it yields a non-zero �eld
with only non vanishing components Bzz = −(2mα)2.
This �eld gives rise to a Lorentz-like force acting in oppo-
site way for electrons with opposite z component of the
spin. As a result charge and spin currents, �owing per-
pendicularly to each other, are coupled in much the same
way as charge currents are in the ordinary Hall e�ect:

J↑y =
Bzzτ
2m

J↑x , J↓y = −B
z
zτ

2m
J↓x ,

where J↑(↓)i are the number currents for electrons with
up and down spin along the z axis. All this leads to the
addition of a further term in the spin current (12)

Ja
i = −D(∇iS)a − εija

γ

e
Jj , (16)

with the spin Hall angle γ = mα2τ and e > 0 the unit
charge. This last term is responsible for the spin Hall
e�ect. The charge current can be written in a similar
way as

Ji = −D∂i(−en)− εija4eγJa
j , (17)

n being the electron density. In the presence of an exter-
nal electric �eld one must add the standard drift terms
on the expressions for both the charge and spin currents.
Since we are not interested here in such a case, we do not
include them to keep our expressions as simple as pos-
sible. Together with the obvious continuity equation for
charge, Eqs.(14), (16)�(17) are all we need to discuss the
coupled dynamics of spin and charge, provided we add a
term responsible for the initial non equilibrium spin po-
larization. To understand the origin of a non equilibrium
spin polarization we assume a time-dependent magnetic
�eld Ba(t) coupling linearly with the spin density Sa. By
using linear response theory we may write

δSa(t) =

∫ ∞
−∞

dt′χ(t− t′)Ba(t′), (18)

χ(t) being the generalized spin susceptibility. The ordi-
nary static spin susceptibility is given by the zero fre-
quency Fourier transform of χ(t)

χ0 =

∫ ∞
−∞

dt′χ(t− t′). (19)

The non equilibrium spin polarization is obtained by sub-
tracting from δSa(t) the instantaneous spin polarization
δSa

equi(t) = χ0B
a(t). By using Eqs.(18) and (19) the rate

of change of the non equilibrium spin polarization reads
d

dt
(δSa(t)− δSa

equi(t)) =
d

dt

∫ ∞
−∞

dt′(Ba(t′)

−Ba(t))χ(t− t′) ≈ −∂tBa(t)χ0. (20)
Hence, by assuming a magnetic �eld varying in time at a
constant rate ∂tB ≡ Ḃy along the y axis, we may write
the continuity equation for the non equilibrium spin den-
sity Sa ≡ δSa(t) − δSa

equi(t) in the presence of a steady
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spin injection

∂tS
y = −χ0Ḃ

y − 1

τDP
Sy. (21)

In the absence of any external �eld breaking translational
invariance, we have neglected the space derivative term
appearing on the left hand side of Eq.(14).
In the presence of a steady-state spin injection along

the y axis, by using Eqs.(16-17) and (21), we get the
charge current induced along the x axis

Jx = (−4eγ)(2αmD)(τDPχ0)(−Ḃy) =

−eαN0τḂ
y, (22)

having included the Bohr magneton and the gyromag-
netic ratio in the de�nition of the magnetic �eld so that
χ0 = −N0/2. Eq.(22) is the the mathematical expression
of IEE, whereby a charge current is induced by a non
equilibrium spin polarization. We notice that the DPSR
time τDP has dropped out from the �nal expression of
the Edelstein conductivity σIEE = Jx/Ḃ

y = −eαN0τ .
This is because, as the derivation of Eq.(4) has shown,
the precession which generates the out-of-plane spin den-
sity occurs during the time between two successive colli-
sions. The longer DPSR time τDP controlling the value
of the steady-state spin injection, Sy = −τDPχ0Ḃ

y, is
compensated by the fact that the coupling between spin
density and spin current develops over longer time and
length scales as shown in Eq.(8), which can also be writ-
ten as Jz

y = (LSO/τDP)Sy, LSO = (2mα)−1 being a
typical length scale associated to the SOC. Finally, the
spin Hall angle controlling the conversion of the gener-
ated spin current into the charge current can be written
as γ ∼ (ατ)/LSO, thus explaining how in the �nal re-
sult (22) only the length scale ατ remains. This suggests
that Eq.(22) is actually valid beyond the di�usive regime
where αpF τ � 1. This can be checked by computing
the Kubo expression for σIEE, whose evaluation is brie�y
sketched. The conductivity for the IEE reads

σIEE = lim
ω→0

〈〈Jx;Sy〉〉
iω

=

− e

2π

∫
d2p

(2π)2
Tr

[
ĴxĜ

R σ
y

2
ĜA

]
, (23)

where the retarded Green function is ĜR = GR
0 σ

0 +
GR

1 σ
x + GR

2 σ
y, GR

0 = (GR
+ + GR

−)/2, GR
1,2 = (p̂ ×

ẑ)(GR
+ − GR

−)/2, and GR
± = (ω − ε± + i/2τ)−1, with

ε± = p2/2m ± αp the eigenvalues of the Hamiltonian
(1). Similar relations exist for the advanced Green func-
tion GA. The scattering time τ enters via the self-
consistent Born approximation of the impurity technique.
The charge current vertex Ĵx = px/m does not contain
anomalous contributions due to vertex corrections cancel-
lations [8]. Following the methods of Ref. [8] one obtains

σIEE =
e

8πm

∫
d2p

(2π)2
p
(
GR

+G
A
+ −GR

−G
A
−
)

=

−eN0ατ, (24)
thus con�rming the validity of the result (22) even be-
yond the di�usive regime. The expression (22) can be
further extended to include the e�ect of SOC from the
impurities [4] as well as from bulk asymmetry of the Dres-
selhaus type. We do not consider these extensions here.
To make contact with the experiment [1], we notice that
the steady state spin injection, Ṡy = −χ0Ḃ

y, must be re-
placed by the injected spin current density Jy

s (polarized
along the y direction). Hence, Eq.(22) can be written as
Jx/(−2eJy

s ) = ατ = λIEE, where the measured length
is λIEE = 3 Å. From the measured Fermi wave vector
in a silver-bismuth interface [9], kF ∼ 0.2 Å−1, one es-
timates αkF τ ∼ 1 at the border of the di�usive regime,
but within the domain of validity of the present theory.
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