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We investigate optical conductivity in three dimensional system of bosons under strong magnetic field. In
particular, we consider Bose Hubbard model in the strongly correlated limit, where Mott insulator phase emerges.
For chosen rational number of magnetic flux per cell we show that response of the system gains complex peaks
behavior on the order of frequency corresponding to on-site boson repulsive interaction. Moreover, when anisotropy
in hopping energy for the direction parallel to magnetic field is tuned up, the non-monotonous behavior of the
optical conductivity could appear. The obtained results can be experimentally probed in the system of ultracold

atoms loaded on an optical lattice.
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1. Introduction

Response of the system to the external perturbation
is one of the fundamental problems in condensed mat-
ter physics. One of such an example is an optical con-
ductivity for strongly correlated bosonic systems [1-5].
Importance of bosonic description lays in its wide appli-
cation to the currently investigated materials like high T,
superconductors [6, 7] or ultracold atoms loaded on an
optical lattice [8]. Moreover the response became highly
non-trivial when we additionally subject to the system
strong magnetic field, what was in the past years widely
investigated experimentally, e.g. Josephson Junction ar-
rays [9, 10] or ultracold atoms [11, 12].

In this paper, we focus on the linear response theory
for the Bose Hubbard model (BHM) in three dimensions
where strong magnetic field plays an important role. For
Mott insulator phase we show, that presence of the Hof-
stadter spectrum [13] split by boson interaction energy,
causes the pronounced consequences in the optical con-
ductivity spectra, where only the intra Hofstadter band
transitions are allowed [5]. In particular, complex peak
behavior appears dependening on the strength of exter-
nal magnetic field. We compare our results with the case
in which magnetic field is absent.

Moreover, we investigate anisotropy effects introduced
in hopping energy. We show, that anisotropy effects have
the largest influence on the system where magnetic field
is non zero. In addition, the optical conductivity could
depend on anisotropy in non-monotonous way. This kind
of consideration, where tuning of kinetic energy of bosons
is needed, could be successfully tested in ultracold atoms
on an optical lattice [2, 14].
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2. Theoretical description

The Bose Hubbard model is defined by the Hamilto-
nian

H=-%" (Jij ol e Jj Ao dipiy H.c.)
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where J;; is hopping energy (non-zero only between ad-
jacent sites), U — onsite repulsion energy, 1 — chemical
potential, exp (i n f; A - dl) — Peierls factor with vec-
tor potential Ag. The presence of bosons on the lattice
is described by annihilation (creation) of boson on site 4
by using operator b; (Bj) Further in formulas below, we
only display electric charge of boson e* (speed of light ¢,
lattice spacing a and reduced Planck constant i we set
to 1).

In the following, we consider uniform magnetic field B,
resulting from Landau qauge Ag = B(0, z, 0), which is
perpendicular to the zy-plane. To simplify notation, we
introduce f = Ba?e*/hc = p/q, i.e. f counts number of
magnetic fluxes per unit cell [13].

In order to investigate optical conductivity (OC) in the
zero temperature limit for the Mott insulator phase, as
a starting point we use formula for the real part of OC
derived in Ref. [5], namely
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Frequency dependent conductivity for different value of magnetic strength f and anisotropy 7. f = 0 case is

plotted with J/U = 0.02 and f =1/2, 1/3, 1/4 is plotted with J/U = 0.03.

where in comparison to Ref. [5] we rewrite expression for
OC to another form. This expression has been obtained
in the approximation, where only the intra Hofstadter
band transitions are taken into account [5]. Moreover, ng
is an integer number which is equal to the average boson
density per site in Mott insulator state, og = (e*)?/his a
quantum conductance and p§ o1, (v; p) is weighted density
of states for conductivity in two dimension with defini-
tion

p;“,m (vip) =

z [0, 5 (k:p)] 6 (v — S (kip) /). (5)

where € (k,p) is a tight binding dispersion energy, enu-
merated by a = 0, 1, ...q — 1. This dispersion depends
on magnetic wave vector k = (k;, k,) and magnetic field
strength f and could be explicitly derived from Harper’s
equations [13]. Next, to study OC in three dimensional
cubic lattice, two dlmensmn dispersion €g (k; p) in Eq. (5)
should be replaced by eg(k;p) — 2J cos kz, what conse-
quently changes weighted density of states for conductiv-

ity (DOSc)
NL Z (9. (€3 (ks )

X0 (v—eq(k 7p)/J+277cosk )=

P4 sp(vip) —2choskz)]2
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where
1
pp(E) = E}QZ5(E*2'I}COSI€Z) (7

is a density of states for one dimension (k, is a wave
vector). As we see in Eq. (7), we introduce anisotropy
constance in z-direction which is denoted by n = J,/J.
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Fig. 2. Anisotropy dependence of conductivity at w =
U for different values of external magnetic field f. We
set J/U = 0.02.
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3. Results and discussion

Particle-hole excitations in Mott insulator phase ap-
pear, when energy subjected to the system is compara-
ble to on-site interaction energy U. This implies that
linear response of the system like OC, shows energy gap
(Fig. 1a). The physical situation is similar when the
strong external magnetic field is applied to the system
but the shape of the response becomes non-trivial.

In particular, orbital magnetic field, introduced by
Peierls factor, causes that kinetic energy of bosons ac-
quires complex behavior. This is explicitly seen in the
tight binding energy dispersion, which from well-known
form —2J (cosk, + cosk,) — 2J, cosk, of the three di-
mensional cubic lattice in the absence of magnetic field
f =0, change to €7 (k;p) — 2J. cosk, where magnetic
fields is present f # 0. Then, the €7 (k;p) part of this
single particle energy emerges in OC as a rich peaks struc-
ture in terms of frequency. This effect is clearly visible
in Fig. 1a, e, i, m (which behavior is very similar to the
quasi-three dimensional system containing for example
60 xy-layers, Ref. [15]).

It is also interesting to notice from Fig. 1a, e, i, m, that
Hofstadter spectra with tiny peaks at the edges of the
band [13] (see, e.g. 1/4 case), generate small OC response
above Mott insulator gap, what in real experiment could
give confirmation of reacher structure of tight binding
dispersions.

Going further we see, that the orbital magnetic field
effects are more pronounced when we study hopping
anisotropy in the z-direction, i.e. when we go from n =1
to n < 1. We plot this results for f =1/2,1/3,1/4 in
Fig. 1 with different non-isotropic value of anisotropy pa-
rameter, n = 0.6, 0.3, 0.03. Consequently, it is seen, that
sub-band structure presented in two dimensional system
is gradually approached [5].

For comparison, we plot optical conductivity for
three dimensional system when magnetic field is absent
(Fig. 1a, b, ¢, d), which shows that its qualitative behav-
ior is almost intact when we change anisotropy factor 7.

Moreover, analyzes of magnetic field and hopping
anisotropy effects reveals also unusual behavior in OC
spectra. Namely, we observe that for chosen value of
magnetic field the OC could depend on anisotropy in non-
monotonous way. This is clearly seen in Fig. 2 where we
set w = U and f = 1/4. Here, we choose point w = U
because it should be easily accessible in ultra cold atoms
experiments where parameters J and U are tunable with
high precision [8]. Furthermore it is valuable to stress
that the strength of the response at w = U is lower for
non-zero amplitude of magnetic field. One of the pos-
sible explanation of this effect could be assigned to the
spectral weight transfer beyond the center of the band
in comparison to the f = 0 case, what is seen in single
particle density of states [13].

All the above results should be available experimen-
tally in ultracold gases loaded on an optical lattice.
Firstly, Mott phase was realized in such systems more
than ten years ago [8]; Secondly, possible measurements
of OC are under current theoretical interest, i.e. using
phase modulation of the lattice [2] or by center of mass
oscillation [4].

4. Summary

We have analyzed optical conductivity in Bose Hub-
bard model using linear response theory. In particular,
strongly correlated bosons in three dimensional cubic lat-
tice were investigated. We have shown that the response
of the system above Mott insulator gap gains complex
peaks behavior in comparison to the case when magnetic
field is absent. Moreover, we have analyzed anisotropy
in the kinetic energy of bosons, where we show that op-
tical conductivity, for given frequency and strength of
magnetic field, could have non-monotonous dependence.
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