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Conductivity of Strongly Correlated Bosons
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We investigate optical conductivity in three dimensional system of bosons under strong magnetic �eld. In
particular, we consider Bose Hubbard model in the strongly correlated limit, where Mott insulator phase emerges.
For chosen rational number of magnetic �ux per cell we show that response of the system gains complex peaks
behavior on the order of frequency corresponding to on-site boson repulsive interaction. Moreover, when anisotropy
in hopping energy for the direction parallel to magnetic �eld is tuned up, the non-monotonous behavior of the
optical conductivity could appear. The obtained results can be experimentally probed in the system of ultracold
atoms loaded on an optical lattice.
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1. Introduction

Response of the system to the external perturbation
is one of the fundamental problems in condensed mat-
ter physics. One of such an example is an optical con-
ductivity for strongly correlated bosonic systems [1�5].
Importance of bosonic description lays in its wide appli-
cation to the currently investigated materials like high Tc
superconductors [6, 7] or ultracold atoms loaded on an
optical lattice [8]. Moreover the response became highly
non-trivial when we additionally subject to the system
strong magnetic �eld, what was in the past years widely
investigated experimentally, e.g. Josephson Junction ar-
rays [9, 10] or ultracold atoms [11, 12].
In this paper, we focus on the linear response theory

for the Bose Hubbard model (BHM) in three dimensions
where strong magnetic �eld plays an important role. For
Mott insulator phase we show, that presence of the Hof-
stadter spectrum [13] split by boson interaction energy,
causes the pronounced consequences in the optical con-
ductivity spectra, where only the intra Hofstadter band
transitions are allowed [5]. In particular, complex peak
behavior appears dependening on the strength of exter-
nal magnetic �eld. We compare our results with the case
in which magnetic �eld is absent.
Moreover, we investigate anisotropy e�ects introduced

in hopping energy. We show, that anisotropy e�ects have
the largest in�uence on the system where magnetic �eld
is non zero. In addition, the optical conductivity could
depend on anisotropy in non-monotonous way. This kind
of consideration, where tuning of kinetic energy of bosons
is needed, could be successfully tested in ultracold atoms
on an optical lattice [2, 14].
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2. Theoretical description

The Bose Hubbard model is de�ned by the Hamilto-
nian

H = −
∑
〈ij〉

(
Jij e i e∗

~c

∫ i
j
A0·dlb̂†i b̂j + H.c.

)
+
U

2

∑
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n̂i (n̂i − 1)− µ
∑
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where Jij is hopping energy (non-zero only between ad-
jacent sites), U � onsite repulsion energy, µ � chemical

potential, exp
(

i e
∗

~c
∫ i
j
A0 · dl

)
� Peierls factor with vec-

tor potential A0. The presence of bosons on the lattice
is described by annihilation (creation) of boson on site i

by using operator b̂i (b̂
†
i ). Further in formulas below, we

only display electric charge of boson e∗ (speed of light c,
lattice spacing a and reduced Planck constant ~ we set
to 1).
In the following, we consider uniform magnetic �eld B,

resulting from Landau qauge A0 = B(0, x, 0), which is
perpendicular to the xy-plane. To simplify notation, we
introduce f = Ba2e∗/hc = p/q, i.e. f counts number of
magnetic �uxes per unit cell [13].
In order to investigate optical conductivity (OC) in the

zero temperature limit for the Mott insulator phase, as
a starting point we use formula for the real part of OC
derived in Ref. [5], namely
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Fig. 1. Frequency dependent conductivity for di�erent value of magnetic strength f and anisotropy η. f = 0 case is
plotted with J/U = 0.02 and f = 1/2, 1/3, 1/4 is plotted with J/U = 0.03.

where in comparison to Ref. [5] we rewrite expression for
OC to another form. This expression has been obtained
in the approximation, where only the intra Hofstadter
band transitions are taken into account [5]. Moreover, n0
is an integer number which is equal to the average boson
density per site in Mott insulator state, σQ = (e∗)2/h is a
quantum conductance and ραq,2D(v; p) is weighted density
of states for conductivity in two dimension with de�ni-
tion

ραq,2D(v; p) =

1

N

∑
k

[
∂kxε

α
q (k; p)

]2
δ
(
v − εαq (k; p)/J

)
, (5)

where εαq (k; p) is a tight binding dispersion energy, enu-
merated by α = 0, 1, ... q − 1. This dispersion depends
on magnetic wave vector k = (kx, ky) and magnetic �eld
strength f and could be explicitly derived from Harper's
equations [13]. Next, to study OC in three dimensional
cubic lattice, two dimension dispersion εαq (k; p) in Eq. (5)
should be replaced by εαq (k; p) − 2Jz cos kz, what conse-
quently changes weighted density of states for conductiv-
ity (DOSc)

ραq,3D(v; p) =
1

NL

∑
kkz

[
∂kx

(
εαq (k; p)− 2Jz cos kz

)]2
×δ
(
v − εαq (k; p)/J + 2η cos kz

)
=

∫
dEρ1D(E)ραq,2D(v + E; p), (6)

where

ρ1D(E) =
1

Nz

∑
kz

δ (E − 2η cos kz) (7)

is a density of states for one dimension (kz is a wave
vector). As we see in Eq. (7), we introduce anisotropy
constance in z-direction which is denoted by η = Jz/J .

Fig. 2. Anisotropy dependence of conductivity at ω =
U for di�erent values of external magnetic �eld f . We
set J/U = 0.02.
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3. Results and discussion

Particle-hole excitations in Mott insulator phase ap-
pear, when energy subjected to the system is compara-
ble to on-site interaction energy U . This implies that
linear response of the system like OC, shows energy gap
(Fig. 1a). The physical situation is similar when the
strong external magnetic �eld is applied to the system
but the shape of the response becomes non-trivial.
In particular, orbital magnetic �eld, introduced by

Peierls factor, causes that kinetic energy of bosons ac-
quires complex behavior. This is explicitly seen in the
tight binding energy dispersion, which from well-known
form −2J (cos kx + cos ky) − 2Jz cos kz of the three di-
mensional cubic lattice in the absence of magnetic �eld
f = 0, change to εαq (k; p) − 2Jz cos kz where magnetic
�elds is present f 6= 0. Then, the εαq (k; p) part of this
single particle energy emerges in OC as a rich peaks struc-
ture in terms of frequency. This e�ect is clearly visible
in Fig. 1a, e, i, m (which behavior is very similar to the
quasi-three dimensional system containing for example
60 xy-layers, Ref. [15]).
It is also interesting to notice from Fig. 1a, e, i, m, that

Hofstadter spectra with tiny peaks at the edges of the
band [13] (see, e.g. 1/4 case), generate small OC response
above Mott insulator gap, what in real experiment could
give con�rmation of reacher structure of tight binding
dispersions.
Going further we see, that the orbital magnetic �eld

e�ects are more pronounced when we study hopping
anisotropy in the z-direction, i.e. when we go from η = 1
to η < 1. We plot this results for f = 1/2, 1/3, 1/4 in
Fig. 1 with di�erent non-isotropic value of anisotropy pa-
rameter, η = 0.6, 0.3, 0.03. Consequently, it is seen, that
sub-band structure presented in two dimensional system
is gradually approached [5].
For comparison, we plot optical conductivity for

three dimensional system when magnetic �eld is absent
(Fig. 1a, b, c, d), which shows that its qualitative behav-
ior is almost intact when we change anisotropy factor η.
Moreover, analyzes of magnetic �eld and hopping

anisotropy e�ects reveals also unusual behavior in OC
spectra. Namely, we observe that for chosen value of
magnetic �eld the OC could depend on anisotropy in non-
monotonous way. This is clearly seen in Fig. 2 where we
set ω = U and f = 1/4. Here, we choose point ω = U
because it should be easily accessible in ultra cold atoms
experiments where parameters J and U are tunable with
high precision [8]. Furthermore it is valuable to stress
that the strength of the response at ω = U is lower for
non-zero amplitude of magnetic �eld. One of the pos-
sible explanation of this e�ect could be assigned to the
spectral weight transfer beyond the center of the band
in comparison to the f = 0 case, what is seen in single
particle density of states [13].

All the above results should be available experimen-
tally in ultracold gases loaded on an optical lattice.
Firstly, Mott phase was realized in such systems more
than ten years ago [8]; Secondly, possible measurements
of OC are under current theoretical interest, i.e. using
phase modulation of the lattice [2] or by center of mass
oscillation [4].

4. Summary

We have analyzed optical conductivity in Bose Hub-
bard model using linear response theory. In particular,
strongly correlated bosons in three dimensional cubic lat-
tice were investigated. We have shown that the response
of the system above Mott insulator gap gains complex
peaks behavior in comparison to the case when magnetic
�eld is absent. Moreover, we have analyzed anisotropy
in the kinetic energy of bosons, where we show that op-
tical conductivity, for given frequency and strength of
magnetic �eld, could have non-monotonous dependence.
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