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We investigate the second-order phase transitions in non-magnetic wurtzite ZnO and magnetic doped with

cobalt. Using reformulated Landau�Lifshitz theory of second-order phase transitions and our computer program,
we have found all possible lower space group symmetries of ZnO and ZnO doped with Co as well as symmetries
of vibration modes which may cause structural phase transitions. We interpret the Raman phonon modes of
magnetic doped ZnO according to corepresentations of the magnetic space group P6′3m

′c (ZnO magnetic). Some
experimental techniques like X-ray di�raction, re�ectivities and Raman spectroscopies can verify our theoretical
results.
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1. Introduction
The ZnO undergoes several structural transitions upon

applications of temperature and pressure. When it is
doped with magnetic elements such as Co during syn-
thesis, layers of the magnetic elements place themselves
between two sublattices of ZnO and O, and the whole
crystal becomes magnetic. Consequently, the symme-
try of ZnO (C4

6v) changes because an extra time reversal
symmetry operator (which reverses magnetic moments
(µ̄ → −µ̄) of dopants and brings t to −t and i to �i) is
added to the symmetry operators of C4

6v(P63mc) result-
ing in magnetic group; C4

6v(C6
6 ) ⇒ M(P63′m

′c). Our
computerized method yields all subgroups of the initial
space group G0. The reformulated Landau�Lifshitz and
Lyubarskii (LLL) [1, 2] method for magnetic space group
restricts the number of possible magnetic space group.
The allowed magnetic subgroups are obtained from ac-
tive physical irreducible corepresentations of the initial
magnetic space group. Therefore, in magnetic crystals
the states of particles like electrons, holes, etc. and
quasiparticles like phonons, magnons, etc. are classi�ed
according to irreducible representations (irreps) of mag-
netic groups called corepresentations (coreps) [3].
In Sect. 2 we have outlined the group theoretical

criteria for second-order phase transitions (S.O.Ph.Tr)
in non-magnetic crystals in terms of irreps and their
symmetrized and antisymmetrized Kronecker products
(KPs): {D}2 and [D]3 [4]. Cracknell has reformulated
the L�L criteria for magnetic transitions in terms of sym-
metrized and antisymmetrized coreps; {CD}2 and [CD]3
and applied to compounds of magnetic group m3′. Here
we investigate S.O.Ph.Tr in both compounds using stan-
dard L�L theory and modi�ed for magnetic ZnO.

2. Second-order phase transitions in

non-magnetic ZnO

According to Landau�Lifshitz and Lyubarskii
(LLL) [1, 2] theory the thermodynamic potential
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for non-magnetic crystals extended up to �fth order is
invariant with respect to unitary space group operators
of the initial unitary group G0. Consequently, several
criteria for transitions have been discussed by many
authors in terms of irreps of unitary space groups [5].
According to LLL theory the irreps of G1 (space
group after transitions) and G0 (space group before
transitions) must satisfy several criteria for transitions
between phases. These are:
� The space group G1 of the crystal after transition is
a subgroup of G0 before phase transition.
� Symmetrized cube of D → [D]3 involved in transition
must not contain identity irrep of G0 usually denoted
by Γ1 or Γ1+ or A1+.
� Antisymmetrized square of D → {D}2 must not
contain any representation which has any component of
a vector representation (V R) as its base (x, y, z).
� The irrep D must be compatible with the identity
irrep of G1.
� The irrep D must be real and therefore must satisfy
the reality test [6].
The irreps satisfying the above criteria are known as
active irreps and may cause S.O.Ph.Tr. The above
criteria are concerned with unitary space group and
their unitary irreps. Using the above criteria we have
determined possible space subgroups of ZnO (C4

6v) and
the active irreps of initial space group responsible for
transitions (see Tables I and II). The Raman spec-
troscopy can identify which subgroup is involved after
transition.

TABLE I

Subgroups H of C4
6v and their symmetry operators using

CDML labelling [8].

c46v(P63mc, 186) 1 2.1 3 4.1 5 6.1 19 20.1 21 22.1 23 24.1

C6
6 (P63; 173) 1 2.1 3 4.1 5 6.1

C4
3v(P31c; 159) 1 3 5 20.1 22.1 24.1

C1
3v(P3m1; 156) 1 3 5 19 21 23

C4
3 (R3; 146) 1 3 5

C1
3 (P3; 143) 1 3 5

(400)
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TABLE II

Active irreducible representations of initial space group (G0 = C4
6v) that may cause S.Or.Ph.Trs by

active modes of high symmetry points Γ , A,K,H,M and L to lower space group symmetry G.

Symmetry operators of the group Subgroups of G0

of high symmetry: G0(C6v)

C4
6v(Γ : 1, 2.1, 3, 4.1, 5, 6.1, 19, 20.1, 21, 22.1, 23., 24.1) C4

6v

Γ2−−→ C6
6 (1,2.1,3,4.1,5,6.1)

C4
6v

Γ2,3,4−−−−→ C1
3 and C4

3 (1, 3, 5)

C4
6v

Γ3−−→ C4
3V (1,3,5,20.1,22.1,24.1)

C4
6v

Γ4−−→ C1
3V (1,3,5,19,21,23)

C4
6v(A : 1, 2.1, 3, 4.1, 5, 6.1, 19, 20.1, 21, 22.1, 23., 24.1) C4

6v

A1⊕A∗1−−−−−→ C1
3v(1,3,5,19,21,23)

C4
6v

A2⊕A∗2−−−−−→ C1
3 and C4

3 (1, 3, 5)

C4
6v

A5⊕A∗5−−−−−→ C1
3 and C4

3 (1, 3, 5)

C4
6v(K : 1, 3, 5, 20.1, 22.1, 24.1) C4

6v

K2−−→ C1
3 and C4

3 (1, 3, 5)

C4
6v(H : 1, 3, 5, 20.1, 22.1, 24.1) C4

6v

H1⊕H∗1−−−−−−→ C1
3 and C4

3 (1, 3, 5)

C4
6v(L : 1, 4.1, 20.1, 23) C4

6v

L1⊕L∗1−−−−−→ C1
3v(1, 23)

C4
6v(M : 1, 4.1, 20.1, 23) C4

6v

M2−−→ C6
6 (1, 4.1)

C4
6v

M3−−→ C4
3v(1, 20.1)

C4
6v

M4−−→ C1
3v(1, 23)

3. Magnetic phase transitions in ZnO doped

with Co

The main criterion for transition from original mag-
netic phase to a new magnetic phase is that the mag-
netic space group after transition must be a subgroup of
the space group before transition. In Table III, we list
the respective magnetic space subgroups and the phonon
mode symmetries involved in the transitions using our

computational methods. Similar to the procedure ap-
plied for non-magnetic ZnO, the criteria for active coreps
are: the symmetrized cube of coreps, [CD]3 must not
contain the identity corep CD1 and the antisymmetrized
square of coreps, {CD}2 must not contain the corep to
which the polar vector corep belongs. Using the Wigner
theory [3] we have calculated coreps listed in Tables IV
and V.

TABLE III

Active irreducible corepresentations of initial magnetic space groups: M0 ≡ C4
6v(C

6
6 )(P63m

′c′), C4
6v(C

4
3v)(P6′3m

′c),
C4

6v(C
1
3v)(P6′3mc

′) that may cause S.Or.Ph.Trs by active modes of CΓ , CA, to lower magnetic space group symmetryM .

Symmetry operators of the magnetic group of high symmetry: M0 Subgroups of the magnetic group of high symmetry: M1

C4
6v(C

6
6 ):P63m′c′ (1, 2.1, 3, 4.1, 5, 6.1, θ19, θ20.1, θ21, θ22.1, θ23, θ24.1) P63m′c′

CΓ2,CA2−−−−−−−→ C1
3v(C

1
3 ):P3m′1(1, 3, 5, θ19, θ21, θ23)

C4
6v(C

1
3v):P6′3m

′c(1, 3, 5, 20.1, 22.1, 24.1, θ2.1, θ4.1, θ6.1, θ19, θ21, θ23) P6′3m
′c

CΓ2,CA2−−−−−−−→ C6
6 (C

1
3 ):P63′(1, 3, 5, θ2.1, θ4.1, θ6.1)

C4
6v(C

4
3v):P6′3mc

′(1, 3, 5, 19, 21, 23,θ2.1, θ4.1, θ6.1, θ20.1, θ22.1, θ24.1) P6′3mc
′ CΓ2,CA2−−−−−−−→ C6

6 (C
1
3 ):P63′(1, 3, 5, θ2.1, θ4.1, θ6.1)

TABLE IVCorepresentations for M(P6′3m
′c) magnetic space group,

where

(
1 0

0 1

)
= E, and

(
w 0

0 w∗

)
= P .

1 2.1 3 4.1 5 6.1

CΓ1 (a) 1 1 1 1 1 1

CΓ2(a) 1 �1 1 �1 1 �1

CΓ3,5(c)

(
E 0

0 E

) (
P ∗ 0

0 P ∗

) (
P 0

0 P

) (
E 0

0 E

) (
P ∗ 0

0 P ∗

) (
P 0

0 P

)

CΓ4,6(c)

(
E 0

0 E

) (
−P ∗ 0

0 −P

) (
P 0

0 P

) (
−E 0

0 −E

) (
P ∗ 0

0 P ∗

) (
−P 0

0 −P

)
CA2(a) 1 �i 1 �i 1 �i
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TABLE VCorepresentations continued for M(P6′3m
′c) magnetic space group.

θ19 θ20.1 θ21 θ22.1 θ23 θ24.1

CΓ1(a) 1 1 1 1 1 1

CΓ2(a) 1 �1 1 �1 1 �1

CΓ3,5 (c)

(
0 E

E 0

) (
0 P ∗

P 0

) (
0 P

P ∗ 0

) (
0 E

E 0

) (
0 P ∗

P 0

) (
0 P

P ∗ 0

)

CΓ4,6(c)

(
0 E

E 0

) (
0 −P ∗

−P 0

) (
0 P

P ∗ 0

) (
0 −E
−E 0

) (
0 P ∗

P 0

) (
0 −P
−P ∗ 0

)
CA2(a) 1 �i 1 �i 1 �i

Using Tables IV and V and the equations: {CDi}2 =∑
k d

a
2i,kCDk and [CDi]3 =

∑
k d

s
2i,kCDk [4, 7], we have

determined the active coreps and these are CA2 and CΓ2.
In other words these coreps may cause magnetic phase
transitions. In Table III we show which coreps take one
magnetic phase of ZnO to another magnetic phase of
lower symmetry.

4. Experimental

In this section we discuss the possible experimen-
tal techniques for monitoring the magnetic transitions.
X-ray and cold neutron scattering are able to monitor
the change of symmetry in crystals. To our best knowl-
edge the experimental data on ZnO magnetic based on
these two techniques are not available. The change of
equilibrium positions of atoms or ions in crystals results
in change of phonons states which can be deduced from
the Raman spectroscopy. The states of phonons in mag-
netic crystals are classi�ed according to relevant coreps.
Therefore knowing the initial symmetry of the crystal
and the symmetry after transitions the group theoretical
methods are able to provide the active modes before and
after transitions.

Fig. 1. Raman spectra of ZnO:Co, A1 → CΓ1, E1 →
CΓ3,5, E2 → CΓ4,6. M. Millot et. al. Journal of Alloys
and compounds 423, 224 (2006).

In Fig. 1, the Raman spectrum of ZnO doped with Co
shows the Raman active modes responsible for transition.

Fig. 2. Room temperature Raman spectra of air an-
nealed CoxZn1−xO �lms for di�erent values of x.
J.S. Thakur et al. Journal of Applied Physics 102,
093904 (2007).

The classi�cation of the active modes in Fig. 1 is in terms
of irreps. However the appropriate classi�cation should
be A1 → CΓ1, E1 → CΓ3,5 and E2 → CΓ4,6.
The Raman active modes are contained in sym-

metrized square of vector representation [V ]2 obtained
from CDML [8]. Decomposing [V ]2 onto irreps and
coreps of non-magnetic and magnetic space groups we ob-
tain the Raman active modes of the crystal which appear
in Fig. 1 and 2. For ZnO, from the decomposition of [V ]2
we obtain the Raman active modes: Γ1,5,6(A1, E1, E2)
and for ZnO:Co, CΓ1, CΓ3,5 and CΓ4,6.
Assigning phonons in Fig. 2, for air annealed and 8.7%

in the region (520�800) cm−1 by CΓ1, CΓ3,5 and CΓ4,6

we may identify the coreps responsible for S.O.Ph.Tr
and the magnetic subgroup after transition, C6

6 (C1
3 ):

P63′(1, 3, 5, θ2.1, θ4.1, θ6.1).
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5. Discussions and conclusion

In this work, we investigate S.O.Ph.Tr in magnetic and
non-magnetic ZnO based on L�L and group theoretical
methods. Our rigid calculations yield appropriate active
irreps and coreps responsible for transitions. There are
at least two ways to �nd appropriate subgroup of initial
group ZnO. Using our computational methods or CDML
tables we �nd several possible space subgroups. Using
Lyubarskii [2] we found subgroups caused by respective
irreps and coreps. In other words irreps and coreps yield
appropriate subgroups (structures of the crystals) ap-
pearing after S.O.Ph.Tr (see Tables II and III).

TABLE VI

Irreps of Γ2 of C4
6v.

1 2.1 3 4.1 5 6.1 19 20.1 21 22.1 23 24.1

Γ2 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1

For example from Table VI we see that only symmetry
operators 1, 2.1, 3, 4.1, 5, 6.1 do not change the ρ and
belong to the subgroup C6

6/T of C4
6v/T . Similarly for

the corep CA2 the following antiunitary operators, 1, 3,
5, θ19, θ21, θ23 do not change the basis and they form
the magnetic space subgroup P3m′1 of P63m

′c′ (see Ta-
ble III).
To our best knowledge this is the �rst time of describ-

ing the theory of S.O.Ph.Tr using the classi�cation of

phonon states in magnetic crystals in terms of coreps.
Previous descriptions of transitions in magnetic crystals
were done using the classi�cations of phonons by ordinary
unitary irreps. It is to be mentioned that this approach is
not wrong but it is not fully satisfactory because the oper-
ator of time reversal symmetry is not taken into account.
Clearly, the non-magnetic space group C4

6v is a subgroup
of C4

6v magnetic with P6′3m
′c symmetry.
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