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We use a microscopic theory taking into account the nearest-neighbour exchange and dipolar interactions

to study two-dimensional magnetic nanodots and nanorings. Magnetic con�guration is assumed to form an in-
plane vortex (circular magnetization). We examine the dependence of the frequencies and pro�les of spin waves
on the dipolar-to-exchange interaction ratio d and the size of the dot (ring). Special attention is paid to some
particular modes, including the lowest mode in the spectrum and the fundamental mode, the frequency of which
proves almost independent of d. In the case of the lowest mode di�erent pro�les are observed: azimuthal, fun-
damental (quasiuniform) or highly localized, depending on d and the size. We also study the fundamental mode
evolution including its hybridization and explain the selection rules.
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1. Introduction

Concurrence of the short and long range interactions
is responsible for a number of e�ects in a variety of
systems [1�5]. In small magnetic dots the competi-
tion between the exchange and dipolar interactions leads
to a rich spectrum of stable and metastable magnetic
con�gurations, including vortex states [6, 7]. Poten-
tial applications of magnetic vortices include single mag-
netic nanoparticle sensing and trapping [8], microwave-
frequency oscillators [9], data storage and informa-
tion processing [10], or frequency multiplication [11].
An important role in all of these applications is played
by spin waves. In the present study we focus on
the spin-wave spectrum of two-dimensional (2D) circu-
lar dots and rings with particular attention paid on
two special modes: the lowest mode in the spectrum
and the fundamental mode.

The lowest mode plays a special role in metastable vor-
tices, in which it becomes a soft mode responsible for
the transition to a di�erent magnetic con�guration [12].
In experimental and micromagnetic studies the lowest
spin-wave mode is reported to be an azimuthal mode of
di�erent order [13], a localized mode [14], or even the fun-
damental mode [15]. Here we show that for a critical value
of the dipolar-to-exchange interaction ratio d, for which
the vortex state loses its (meta)stability, the lowest mode
can have three forms: localized, delocalized but con�ned
to a small area in the ring, or almost uniform. Beyond
this critical situation, the lowest mode is an azimuthal
mode of the order depending on d.

We also analyze the fundamental mode evolution
as a function of d. We show that its symmetry increases
with growing d which results in occurrence of several
anticrossings with di�erent azimuthal modes. The latest
studies show a major role of mode hybridization in plas-
monic devices [16]. The issue also a�ects the pro�les of
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the hybridizing modes, which is important in the context
of the in�uence of the internal excitations of nanoparti-
cles on their magnetization reversal, even for nanoparti-
cles smaller than the exchange length [17].

2. Theoretical approach

The object is a circular dot cut out of a 2D square
lattice with elementary magnetic moments (spins) in its
sites. Since the dot is based on a discrete lattice its
boundary is not perfectly circular, thus by �circular� we
mean cut with a circle. With increasing the diameter
the boundary of the dot becomes smoother, which has
an e�ect on the spin-wave pro�les, but general features
remain unchanged even in rather small dots.
We consider the dynamics of a magnetic moment MR,

R being the position vector, in the linear approxima-
tion, assuming |mR| � |MR|, |M0,R| ≈ |MR| and
mR⊥MR where M0,R and mR are the static and dy-
namic component of the magnetic moment, respectively.
To describe the time evolution of mR, oscillating har-
monically with a frequency ω, we use the damping-free
Landau�Lifshitz (LL) equation taking into account the
dipolar and exchange interactions. After linearization of
the LL equations we obtain a system of equations for
the in-plane and out-of-plane coordinates of the dynamic
component of the magnetic moments. Numerical diago-
nalization of the corresponding eigenvalue problem yields
the frequency spectrum of the spin-wave excitations, and
the spin-wave pro�les, i.e., the distribution of the in-
plane (mr) and out-of-plane (mk) amplitudes of preces-
sion of the elementary magnetic moments. (For more
details please see our paper [18].)
There is only one material parameter used in our

model, namely the dipolar-to-exchange interaction ratio

d =
(gµB)

2
µ0

8πa3NNJ
,

where g is the g-factor, µB � the Bohr magneton, µ0 �
the vacuum permeability, aNN � the nearest-neighbour
distance, and J � the nearest-neighbour exchange inte-
gral. In the case of square and hexagonal lattices aNN is
the lattice constant.
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There are no simulations performed in this approach.
The magnetic con�guration is assumed to be the in-plane
vortex: the static component of each magnetic moment
in the system lies in the plane of the dot perpendicu-
larly to its radius. We receive the information about its
stability from the spin wave spectrum. The occurrence
of zero-frequency excitations is indicative of the presence
of nucleation modes and instability of the assumed mag-
netic state. The lack of zero-frequency mode implies the
(meta)stability of the assumed magnetic con�guration.

3. Results

In Fig. 1 we show a typical dependence of the spin-
wave spectrum on the dipolar-to-exchange interaction
ratio d for a circular dot. The dependence clearly in-
dicates the existence of three ranges of d: below d1
and above d2 the assumed in-plane vortex is not stable,
while between these critical values absence of the zero-
frequency modes indicates its (meta)stability. (The prob-
lem of the in-plane vortex stability has been studied in
our papers [18�20].)
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Fig. 1. Spin-wave frequency of 36 lowest modes vs. d
(in logarithmic scale) for an in-plane vortex state in
2D circular dot of diameter L = 101 lattice constants.
The lack of zero-frequency modes indicates the stability
of the assumed magnetic state for d1 < d < d2. Also the
pro�les of the lowest mode for �ve values of d marked
with arrows are shown.

The lowest mode evolution as a function of d for cir-
cular dots was studied in our paper [12] thus here let us
recall only most important results. Just above d1 the low-
est mode is strongly localized at the dot centre; at the
same time its frequency increases steeply with increase
of d. Such behaviour is typical for a soft mode: as d
continues to grow the excitation of this mode becomes
increasingly di�cult. For d ≈ 0.1171 the localized mode
crosses the second order azimuthal mode (0,2). The fre-
quency of azimuthal modes decreases with growing d with
the rate which depends on their azimuthal number, for
higher order modes it decreases faster. Thus for d > 0.37
mode (0,3) is the lowest in the spectrum and for d ≈ 0.68
mode (0,4) starts to be the lowest one. Above d ≈ 0.82
we observe softening of the lowest mode and again lo-
calized mode has the lowest frequency but now it has
azimuthal number 2.
As we show in [12] in dots smaller than 100 lattice

constants in diameter for small d the lowest-frequency
mode is �rst order azimuthal mode while for higher
d mode (0,2). It stay the lowest in the spectrum un-
til d = d2 continuously localizing at the centre. We show
the dependence of the frequency f of the lowest mode vs.

the diameter L of the dot to be approximately f ∼ L1/2,
which is in good agreement with analytical study [21, 22].
For a �xed material (given d) increase of the size of the
dot results in increase of the order of the lowest azimuthal
mode; such e�ect was observed experimentally [13] and
analytically [22].
The size of a dot has no in�uence on both d1 and

the f(d) of the lowest mode in vicinity of d1 until it
crosses an azimuthal mode. We found di�erent situation
in circular rings [20] where removing of the central part
of a dot results in lack of lowest mode localization.
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Fig. 2. Spin-wave frequency of 25 lowest modes vs. d
(in logarithmic scale) for an in-plane vortex state in
2D ring of external diameter L = 25 and internal one
L′ = 2 lattice constants. The pro�les of the lowest mode
for six values of d marked with arrows are shown.

In Fig. 2 we show the spin-wave spectrum vs. d for
the ring of outer diameter L = 25 lattice constants and
inner one L′ = 2, which means that only four spins
are removed from the dot centre. The plot is accom-
panied by the pro�les of the lowest spin-wave mode, cor-
responding to the points marked with arrows. The exter-
nal size is much lower than the mentioned above thresh-
old 100 lattice constants but the lowest mode behaviour
changed dramatically. There is no more strongly localized
mode in the spectrum: near d1 the fundamental mode is
the lowest. While d increases, successive azimuthal modes
become the lowest up to (0,4). It is similar to dots with
L > 100 and results from weakening exchange interaction
due to removal of the vortex centre. Mode (0,4) remains
the lowest mode until d2 with increasing localization
at the high spin density lines.
Another special mode is the fundamental mode (0,0)

with the frequency very little dependent on d. The evo-
lution of this mode is shown in Fig. 3. Its pro�le is not
uniform (Fig. 3b, d = 0.112) because the dot is based
on the square lattice. (Similar e�ect occurs for micro-
magnetic simulations due to the arti�cial discretization
of the sample [15].) As we show in [12], it has two con-
sequences for the fundamental mode behaviour: its fre-
quency changes with d (it should not for a uniform ex-
citation) and it hybridizes with the azimuthal mode of
the same symmetry. Additionally, for d ≈ d1 we observe
hybridization of three modes: localized, azimuthal (0,4)
and fundamental (see mixed pro�les for d = 0.133).
After hybridization the pro�le of the fundamental

mode is restored (d = 0.235) but rotated by π/4 with
maxima along the high spin density lines. While d con-
tinues to increase these maxima split and the symmetry
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Fig. 3. (a) Evolution of the fundamental mode vs. d
for the dot of the diameter L = 51. (b) Pro�les of
the fundamental mode for points marked with black
squares in (a). (c) Pro�les of hybridizing modes for
d = 0.375. Also, the pro�le of the second (0,8) mode
which is not involved in the hybridization is shown.

is doubled (d = 0.35), thus another hybridization occurs
with (0,8) mode (d = 0.35−0.415). This e�ect contin-
ues with growing d and next two hybridizations occur.
For d > 1 the mode under the question loses its funda-
mental character; its pro�le has pronounced maxima and
minima, and its frequency noticeably depends on d.
In every case of hybridization only one azimuthal mode

of a given symmetry is involved while the other one is
�ignored� (see the pro�les in Fig. 3c). This is because
the amplitude maxima of the fundamental mode coin-
cide with the nodal lines in its pro�le. Thus, both iden-
tical symmetry and the coincidence of the anti-nodes of
the same phase of the azimuthal mode with the ampli-
tude maxima of the fundamental mode are necessary for
mode hybridization to occur. (The same rules hold for
multi-mode hybridization [12].)

4. Conclusions

The lowest-frequency mode has di�erent character de-
pending on the stability of the vortex state. Far from
the critical value of the dipolar-to-exchange interac-
tion ratio d azimuthal modes are the lowest with az-
imuthal number m being the compromise between ex-
change and dipolar interactions: exchange interactions
prefer lowerm while dipolar interactions favour higherm,
regardless of whether their predomination is due to the
material or size of the dot (ring). Close to the criti-
cal value of d the localized mode is the lowest in dots
and the quasi-uniform one in rings (compare our pa-
pers [20, 23]). Thus the pro�le of the lowest mode carry
information on the stability of the vortex.
The pro�le of the fundamental mode, an analogue of

the uniform mode, has the symmetry inherited from
the lattice the dot is based on (compare results for
hexagonal lattice [23]). Additionally, its symmetry grows
with d. As a consequence, with growing d, it hy-

bridizes with descending azimuthal modes of the corre-
sponding symmetry. Additional condition is coincidence
of the maxima of the fundamental mode with the antin-
odal lines of the same phase of the azimuthal mode.
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