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Exact solutions of the eigenproblem of the magnetic pentagonal ring exhibit the arithmetic symmetry expressed
in terms of a Galois group of a �nite extension of the prime �eld Q of rationals. We propose here a geometric
interpretation of this symmetry in the interior of the Brillouin zone, in terms of point groups. Explicitly, it is a
subgroup of the direct product C4 ×D4. We present also the appropriate irreducible representations of the group.
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1. Introduction

Bethe Ansatz [1�4] provides unique exact solution of
the eigenproblem of the isotropic Heisenberg Hamilto-
nian for a magnetic ring of N nodes with the spin 1/2.
Recently, it has been demonstrated that this solution ex-
hibits a Galois symmetry, stemming from the fact that
the eigenproblem in the initial basis of magnetic con�g-
urations is expressible in integers, and thus the solutions
require only a �nite extension of the prime �eld Q of ra-
tionals [5�8]. The Galois group of this �eld extension has
proven to be a useful tool in discovering several algebraic
symmetries between exact eigenvalues and eigenstates.
Details of this tool are expressed, however, in a somehow
hermetic terms of algebraic Galois theory. We intend to
interpret them in terms of quantum mechanical notions
and calculations. The main aim of the present paper
is interpretation of the Galois group for the magnetic
pentagon (N = 5) [5, 6] in terms of some symmetries
of point groups.

2. The eigenproblem of the pentagon

and Bethe Ansatz

A detailed description of the diagonalisation procedure
for the magnetic pentagon has been given in [5]. Here we
focus our attention on the two-magnon sector (r = 2 spin
deviations from the ferromagnetic saturation), in the in-
terior Bint = {k = ±1,±2} of the Brillouin zone for
the pentagon, where k is the quasimomentum, the exact
quantum number responsible for the translational sym-
metry of the pentagon, given by the cyclic group C5. The
10×10 block Heisenberg Hamiltonian for the sector r = 2,
consisting of integers (2 or 4 on the main diagonal, and
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1 or 0 outside), decomposes into two-dimensional blocks
of the form given in detail in [5]. In principle, an ar-
bitrary quantum mechanical eigenproblem in the �nite-
dimensional Hilbert space assumes the number �eld C of
complex numbers, as underlying number �eld. The �eld
C is algebraically complete, i.e., any polynomial with co-
e�cients in C has all its roots in C. However, in many
cases, including our case of pentagon, this �eld is redun-
dant, in spite of the following facts:
(a) the original 10× 10 problem in the basis of magnetic
con�gurations requires only the prime �eld Q ⊂ C (since
all matrix elements are integers),
(b) the e�ective four 2× 2 eigenproblems for the interior
Bint require the cyclotomic extension Q(ω) of the prime
�eld Q,
(c) solutions of the eigenproblem are also expressible
in Q(ω). Due to this fact, Q(ω) can be referred to as
to the Heisenberg �eld of magnetic pentagon [6, 7].

The solution obtained from 2×2 eigenproblems do not
display explicitly the string structure of the Bethe Ansatz
solutions. This structure can be derived by solution of
the so called inverse Bethe Ansatz [5�9]:

akbk = ω−k,

ak + a−1k + bk + b−1k = Ek + 4, (1)

where ak and bk are unknown portions of phase related
to spectral paramters (λ, µ) and pseudomomenta p1, p2,

ω = exp(2π i/5), and Ek = −4 + (−1)k
√
5, k ∈ Bint,

stands for eigenenergies of the problem being discussed.
Equation (1) has a simple physical meaning of conser-
vation of quasimomentum and energy. According to [6],
Bethe parameters ak, bk can be obtained in the form

(ak, bk) =
(−1)k

√
5± γε(k)

2(1 + ωk)
, k ∈ Bint, (2)

where ε : Z×5 → C2 is the homomorphism given by

ε(2) = −1, and γ1 = i
√
1 + 2

√
5, γ−1 =

√
−1 + 2

√
5,

so that γ1 and γ−1 corresponds to scattered (k = ±1)

(336)
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and bound (k = ±2) states of pentagon, denoted by

rigged string con�gurations
∓2
∓2

and ±2 , respec-

tively [10�12].
The Bethe Ansatz solution of the eigenproblem is ex-

pressible within the extension of the cyclotomic �eld
Q(ω) by γ1 and γ−1. This extension can be denoted
by B = Q(ω, γ1, γ−1), and referred to as the Bethe �eld.

3. Galois symmetries

The Bethe �eld B is a 16-dimensional linear space
over Q, with the basis (cf. [6]):

[k; l1, l2] := γl11 γ
l−1

−1 ω
k, l1, l2 ∈ Z2, k ∈ Z×5 . (3)

Within this context, the interior Bint of the Brillouin zone
for pentagon can be identi�ed with the multiplicative
group Z×5 of the �nite number �eld Z5, and the ranges
for l1 and l−1 with Z2. The Galois group of the Bethe
�eld B, i.e. the group G = Aut(B/Q) of all automor-
phisms of B acts on the basis (3) as

(l; η1, η−1)[k; l1, l−1] = ηl11 η
l−1

−1 [lk; lε(k), l−ε(k)], (4)

such that

G = {(l; η1, η−1)| η1, η−1 ∈ C2, l ∈ Z×5 }, (5)

where C2 ≡ {1,−1} can be interpreted as the cyclic group
C2 with the multiplicative group composition (to be
distinguished from the additive group (Z2,+)). Equa-
tion (4) yields the multiplication law

(l′; η′1, η
′
−1)(l; η1, η−1) =

(
l′l; η′ε(l)η1, η

′
−ε(l)η−1

)
. (6)

Equation (6) shows that the group G is a semidirect
product

G = Z×5 ×ψ (C2 × C2), (7)

with ψ : Z×5 → Aut(C2 × C2) given by ψ(l)(η1, η−1) =
(ηε(l), η−ε(l)), being the action of the active group Z×5 on
the passive group C2 × C2, which permutes only the or-
der of elements in the semidirect product C2 × C2, so
that the group (7) is the wreath product of the group C2

and C4. It determines the action of the Galois group G
in the Bethe �eld B, in the basis (3) adapted to exact
Bethe Ansatz eigenstates. It thus allows one to generate
all eigenstates within the interior Bint of the Brillouin
zone from a single one. We describe the group G as the
Bethe�Galois group for the interior of the Brillouin zone
for the Heisenberg pentagon.

4. Point group extensions

The chain of sub�elds Q ⊂ Q(ω) ⊂ B implies that the
Bethe�Galois group G is the extension of the (Abelian)
group

D2 = Aut(B/Q(ω)) = {(l1, l−1)| l1, l−1 ∈ Z2}, (8)

isomorphic to the dihedral point group D2, by the group

C4 = Aut(Q(ω)/Q) = Z×5 ∼= Bint, (9)

isomorphic to the cyclic point group C4, in accordance
with the short exact sequence of groups and homomor-
phisms

1→ D2 → G→ C4 → 1. (10)

Roughly speaking, the passive group changes at most
only the ring of numbers γ1 and γ−1: γ1 7−→ ±γ1,
γ−1 7−→ ±γ−1, whereas the active group C4 permutes
quasimomenta in the interior of the Brillouin zone.
The combined action of these two groups, described pre-
cisely by Eq. (6), admits transformations of bound and
scattered two-magnon states, accompanied by a gauge
by ±1.

5. Geometric interpetation

The Bethe�Galois group G, presented in previous sec-
tions as the extension of D2 by C4 with the operator
action ψ, can be also seen as a subgroup of the index 2,
embedded into the direct product D4 × C4 of standard
point groups. Within this setting, G acts on two squares,
presented in Fig. 1. Vertices of the �rst square represent
the regular orbit of the de�ning action of C4 as the Ga-
lois group of the cyclotomic �eld along Eq. (9), whereas
those of the second � a transitive representation of the
point group D4, having D2 of Eq. (8) as its subgroup.

Fig. 1. The action of Galois group on two squares:
(a) passive group, (b) active group.

On the �rst square there acts the group C4 = 〈c4〉,
which is generated by the element c4, corresponding to
the rotation by the π/2 angle. It is compatible with a
multiplication of an index of vertices by 2mod 5. On the
second square there acts the group D4, which, except of
rotations by a multiple of the right angle, contains also
re�ections versus b, c, u and u′ axes. For both groups,
C4 and D4, one can distinguish adequate subgroups of
the rank 2: C2

4 := 〈c42〉 in C4, and D2 := 〈b, c〉 in D4.
The Bethe�Galois group is isomorphic with the group G:

G = (C2
4 ×D2) ∪ (c4C

2
4 × c4D2). (11)

Now we see that groups described by Eqs. (5) and (11)
are isomorphic. Indeed, the isomorphism is given by gen-
erators of these groups [6]:

ã = (c4, u) ∼= (2; 1, 1), b̃ = (e, b) ∼= (1;−1, 1). (12)

The form (11) is convenient to make a split of the
group G into classes of conjugated elements. As all the
classes from the group C4 are single-element (like in ev-
ery Abelian group), and taking into account classes in the
groupD4 of the form {e}, {c4, c4−1}, {c42}, {a, b}, {u, u′},
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one gets the split of Bethe�Galois group into 4 one-
element classes

{(e, e)}, {(e, c42)}, {(c42, e)}, {(c42, c42)}, (13)

and 6 two-element classes

{(c4l, c4), (c4l, c4−1)} ; l = ±1,

{(c4l, b), (c4l, c)} ; l = 0, 2,

{(c4l, u), (c4l, u′)} ; l = ±1. (14)

Furthermore, the formula (11) gives possibility of con-
struction of irreducible representations of the group G
via representation of the group C4 and D4. Appropriate
matrices of irreducible representations are of the form

τn,m(b̃) = (−1)n, τn,m(ã) = im,

n ∈ Z2, m ∈ Z4, (15)

for one-dimensional representations, and

E0(b̃) = E1(b̃) =

(
1 0

0 −1

)
,

E0(ã) =

(
0 1

1 0

)
, E1(ã) =

(
0 i

i 0

)
(16)

for two-dimensional representations. One can distin-
guish eight one-dimensional representations, and two
two-dimensional representations, which is concordant
with the Burnside theorem 8 · 12 + 2 · 22 = 16.

6. Conclusions

We have proposed an interpretation of the Galois sym-
metries of the Bethe Ansatz solutions for magnetic pen-
tagonal ring inside its Brillouin zone, expressed by so-
called Bethe group, in terms of point groups C4, D2,
and D4. Namely, the semidirect product of D2 by C4

can be embedded as a subgroup of index 2 in the direct
product C4 × D4, which admits a geometric interpreta-
tion of actions of the relevant group on two deformed
squares in the complex plane. It makes transparent the
structure of conjugacy classes and irreducible representa-
tions of the Bethe group. In particular, bound and scat-
tered two-magnon states are interchanged by the action
of the Bethe group.
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