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In the framework of the matrix product states representation the e�ect of the single-ion anisotropy on the time
evolution of the initial state after a sudden quench of the local magnetic �eld has been investigated. The overlap of
the initial and time-evolved states, so called the Loschmidt echo, magnetization pro�les and correlation functions
are presented.
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1. Introduction

Quantum magnetism is one of scienti�c disciplines
where experimental and theoretical studies strongly stim-
ulate each other. Recent unprecedented progress in the
study of ultracold gases has opened up for experimental
studies of spin models with an incomparable accuracy.
Atoms with the desired spin are placed in nodes of optical
lattices where their interaction can be tuned by external
�elds [1]. It opens the experimental way to investigate
the ground state and dynamical properties of magnetic
chains.
In the present paper, the one-dimensional spin-1 an-

tiferromagnetic Heisenberg model is investigated by the
matrix product states (MPS) formalism [2]. To study
the ground-state magnetization dynamics we have con-
sidered the chain with N = 100 sites and open bound-
ary conditions. The S = 1 Heisenberg Hamiltonian con-
sists of an isotropic exchange term and uniaxial single-ion
anisotropy term

H = J

N−1∑
i=1

SiSi+1 +D

N∑
i=1

(Szi )2, (1)

where SiSi+1 = Sxi S
x
i+1 + Syi S

y
i+1 + Szi S

z
i+1, J is

an exchange coupling constant and D is the uniaxial
anisotropy parameter.
We consider two types of quantum quenches: the cen-

tral spins perturbation and the whole chain perturbation.
For t ≤ 0 the Hamiltonian is extended by the additional
term taking one of the following form:

H(t ≤ 0) = H+B
(
SzN/2 − S

z
N/2+1

)
, (2)

H(t ≤ 0) = H+B

N/2∑
i=1

Szi −
N∑

i=N/2+1

Szi

 . (3)

The parameter B is a local magnetic �eld acting along
the z-th coordinate axis and for simplicity the g-factors
and µB have been set to one. To be in the high-�eld
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regime B was set to 5J . The initial state |ψ0〉 is chosen
as the ground state of H(t ≤ 0) and then for t > 0 the
time evolution is governed by the HamiltonianH. An ini-
tial quantum state |ψ0〉 evolves into a state

|ψ(t)〉 = exp (− iHt) |ψ0〉. (4)

In order to measure the overlap of the time-evolved
state and the initial state, the Loschmidt echo can be
de�ned [3]:

L(t) = |〈ψ0| exp (− iHt) |ψ0〉|2. (5)

The in�nite AF spin-1 Heisenberg chain with vanishing
uniaxial anisotropy has a nonzero energy gap between the
singlet ground state and the �rst excited state, namely
the Haldane gap [4]. However, for a �nite chain with
open boundary conditions the ground state is split into
four states converging to the same ground state as the
length of the chain tends to in�nity [5].
When the uniaxial anisotropy is taken into account

the Haldane phase was found to exist between D ≈ −0.2
and D ≈ 1 [6]. In order to check if there is a relationship
between the Haldane gap and relaxation dynamics of the
perturbed state, we carry out calculations for three values
of the parameter D = 0,±1.5.

2. Time evolution
The observation that for physical systems only minor

part of Hilbert space is involved [7, 8], resulted in the
rapid development of numerical methods based on a vari-
ational method within the space of MPS. It corresponds
to assigning a �nite entanglement content to spins in the
ground state. Therefore, any state of the spin chain can
be presented in the MPS representation

|ψ〉=
d1,...,dN∑
σ1,...,σN

D1,...,DN−1∑
a1,...,aN−1

Mσ1
1,a1

Mσ2
a1,a2 . . .M

σN
aN−1,1

|σ〉, (6)

where |σ〉 = |σ1, . . . , σN 〉, di is dimension of the local
base {σi} at the i-th site whereas Di are related to the
entanglement of neighbouring spins.
In an analogous manner any operator can be written

as a matrix product operator (MPO):

O=

d1,...,dN∑
σ1,...,σN

d1,...,dN∑
σ′1,...,σ

′
N

Wσ1σ
′
1Wσ2σ

′
2 . . .WσNσ

′
N |σ〉〈σ′|. (7)

(333)
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Due to the above representation the state space grows
only polynomially in the system size (not exponentially
as usual). Thus, the time of calculations is signi�cantly
reduced for one-dimensional strongly correlated systems.
When the variational principle is applied, the ground

state can be found very smoothly by the minimization
procedure 〈ψ|H|ψ〉 under the constraint 〈ψ|ψ〉 = 1 [8].
Moreover, it is one of the most attractive features of the
MPS representation that the time evolution can also be
performed very e�ciently.
Therefore, discrete time as t = N∆t can be used for

the Hamiltonian (1), when a second-order Trotter decom-
position is applied [8] the time-evolution operator can be
presented as

e− iH∆t=e− iHo∆t/2 e− iH e∆t e− iHo∆t/2+O(∆t3), (8)

where

Ho = J

N/2∑
i=1

S2i−1S2i, (9)

He = J

N/2−1∑
i=1

S][2iS2i+1 +D

N∑
i=1

(Szi )2. (10)

Then the time-evolution algorithm takes a very simple
form [8]: one starts from |ψ0〉 and repeats the following
steps:

1. Applying the MPO of the odd bonds to |ψ(t)〉;
2. Applying the MPO of the even bonds to

e− iHo∆t/2|ψ(t)〉;
3. Applying the MPO of the odd bonds to

e− iH e∆t e− iHo∆t/2|ψ(t)〉;
4. Compressing the MPS |ψ(t + ∆t)〉 =

e− iHo∆t/2 e− iH e∆t e− iHo∆t/2|ψ(t)〉 to the starting
dimension.

3. Ground-state dynamic properties

In this section we present numerical studies of the
quench dynamics of the AF spin-1 Heisenberg chain with
uniaxial anisotropy.
When the anisotropy parameter is zero the Haldane

phase exists. As one can see in Fig. 1, for both initial
states the Loschmidt echo decays very rapidly: exponen-
tially for the central perturbation and even faster for the
whole chain perturbation. This di�erence is re�ected also
by a faster involution of the correlation function for the
second case. Moreover, for the Loschmidt echo there is
a distinct oscillation superimposed over the decay curve.
It is worth adding that the magnetization pro�les and the
correlation function for other components were calculated
as well. The results obtained, not presented for reasons
of space, are in correspondence with the presented ones.
Next, we consider the time evolution out of the Hal-

dane phase when D = ±1.5. For the easy-axis anisotropy
(negative D), both the Loschmidt echoes strongly oscil-
late (see Fig. 2), the exponential decay can only be ob-
served for the whole chain perturbation. In this case,
although the spin arrangement along the z−th axis is
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Fig. 1. The time evolution of the Loschmidt echo for
the vanishing uniaxial anisotropy. The upper �gure cor-
responds to the central spins perturbation and the bot-
tom one to the whole chain perturbation. Upper in-
sets present the initial and �nal magnetization along the
z−th axis. Bottom insets show the initial and �nal cor-
relations between the z−th spin components arranged
symmetrically with respect to the chain center.
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Fig. 2. The time evolution of the Loschmidt echo for
the easy-axis anisotropy. Setting drawings and inserts
are of the same data type as in Fig. (1).
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energetically favourable, the initial state does not take
into account the antiferromagnetic interaction between
nearest neighbours and it has to relax to a substantially
di�erent state. The second initial state �ts both the an-
tiferromagnetic order and the direction of the easy-axis
resulting in a very weak decay of the Loschmidt echo.
For the easy-plane anisotropy (positive D) the direc-

tion of the local magnetic �eld, which prepares the initial
state is perpendicular to the plane preferred by the uni-
axial anisotropy. It makes the time evolution complex
and the Loschmidt echo is seen to become less regular,
involving several oscillation frequencies (see Fig. 3).
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Fig. 3. The time evolution of the Loschmidt echo for
the easy-plane anisotropy. Setting drawings and inserts
are of the same data type as in Fig. (1).

4. Conclusions

We have examined the zero-temperature response of a
�nite AF spin-1 Heisenberg chain after the sudden change
of the system parameters. The anisotropy parameter was
chosen in several ways: for D = 0 the Haldane gap was
present whereas for D = ±1.5 was absent.
In order to simulate the dynamics of one-dimensional

quantum systems the matrix product states representa-
tion was employed. The time evolution of the Loschmidt
echo, magnetization pro�les and spin�spin correlation
functions have been performed.
According to our numerical results, it is di�cult to say

whether the di�erences in the time evolution of initial
states are due to the presence of Haldane gap or only
with a high anisotropy favouring an easy axis or easy
plane. Further studies are required to provide a de�nitive
answer.
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