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Non-Fermi-Liquid State in URu0.68Pd0.32Ge
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We report the measurements of dc-magnetization (M), speci�c heat (Cp) and electrical resistivity (ρ) of
an intermetallic URu0.68Pd0.32Ge, that lies at the border between nonmagnetic and magnetic regimes in the
magnetic phase diagram of solid solutions URu1−xPdxGe. The studied composition shows enhanced dc-magnetic
susceptibility χ(T ) and the Sommerfeld ratio Cp(T )/T at low temperatures. Below 4 K χ(T ), Cp(T )/T and ρ(T )

can be described by χ(T ) ∝ T−0.48, Cp(T )/T ∝
√
T and ρ(T ) ∝ c ln(T ) +AT 3/2, respectively. These observations

provide an evidence that URu0.68Pd0.32Ge is a moderately heavy-fermion system with an electronic ground state
of non-Fermi liquid character. We found non-linear e�ect of the magnetization and a large value of the Wilson
ratio, which are consistent with the interpretation in terms of magnetic instability.
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PACS: 71.27.+a, 75.30.Mb, 75.40.Cx, 75.45.+j

1. Introduction

Amongst equiatomic ternaries UTX (T = d-electron
transition metal, X = Si or Ge), crystallizing in the
TiNiSi-type structure, URuGe is a nonmagnetic, whereas
UPdGe undergoes two successive magnetic phase transi-
tions: an antiferromagnetic at 50 K and a ferromagnetic
at 30 K [1, 2]. In order to investigate magnetic phase
diagram as well as to search for a quantum critical point
we have synthesized and performed measurements of
X-ray di�raction, dc-magnetization M , ac-susceptibility
χac(T ), speci�c heat Cp(T ) and electrical resistivity ρ(T )
of solid solutions URu1−xPdxGe [3]. We found that the
alloys crystallize in the orthorhombic TiNiSi-type struc-
ture (space group Pnma). The measurements of the
physical properties have revealed that the compositions
with x ≤ 0.32 are nonmagnetic down to 2 K, while these
with 0.35 ≤ x ≤ 0.8 are antiferromagnetic. It was found
that for x < 0.5 the Néel temperature TN varies with
concentration as TN ∝ (x − 0.32)2/3 and it reaches the
maximum value of 32 K at x = 0.8. The alloy x = 0.9,
like UPdGe, manifests two magnetic phase transitions:
antiferromagnetic at TN = 20 K and ferromagnetic-like
at TC = 30 K. In this contribution we will focus on the
low-temperature properties of the x = 0.32 alloy. Since
this composition is placed at the border between non-
magnetic and magnetic regimes, we anticipate interest-
ing phenomena caused by magnetic instability, including
e.g., non-Fermi liquid behaviour or quantum criticality.

2. Experimental details

Sample URu0.68Pd0.32Ge was prepared and character-
ized with the same procedure reported previously [3]. X-
ray di�raction analysis indicated the sample to be a sin-
gle phase with the room temperature lattice parameters
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a = 0.619 nm, b = 0.4357 nm and c = 0.7548 nm. Mea-
surements of magnetization, speci�c heat and electrical
resistivity in this study were conducted in the tempera-
ture range 0.4�400 K and in magnetic �elds up to 9 T, us-
ing a Quantum Design MPMS magnetometer and PPMS
platform.

3. Results and discussions
In Fig. 1a we show the temperature dependence of

the inverse magnetic susceptibility, χ(T )−1 = H/M(T ),
of URu0.68Pd0.32Ge measured at a magnetic �eld of
µ0H = 0.5 T. In the temperature range 70�400 K,
the susceptibility follows a modi�ed Curie�Weiss law:

Fig. 1. (a) Temperature dependence of the inverse dc-
susceptibility of URu0.68Pd0.32Ge at 0.5 T. (b) A log-log
plot of [χ(T )− χ0] vs. T of URu0.68Pd0.32Ge in several
�elds up to 5 T.
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χ(T ) = NAµ
2
eff/3kB(T −Θp) +χ0, where NA is the Avo-

gadro number, µeff is the e�ective moment of the ura-
nium ions, Θp is the paramagnetic Curie temperature
and χ0 is the temperature independent susceptibility.

A �t of the data yields µeff = 1.71 µB, Θp = −54 K
and χ0 = 0.5 × 10−3 emu/mol. The obtained µeff value
is situated in between those of URuGe and UPdGe [1].
A large value of Θp implies a strong antiferromagnetic
coupling between f electrons. The value of the tempera-
ture independent susceptibility χ0 was used to calculate
the di�erence [χ(T ) − χ0] shown in Fig. 1b. The log�
log plot of [χ(T ) − χ0] vs. T clearly illustrates a power
law of the temperature dependence of low-�eld suscep-
tibility, [χ(T ) − χ0] ∝ T−n, which hints at a non-Fermi
liquid behavior. We found a relation [χ(T )−χ0] ∝ T−0.48

for data collected in the temperature range 1.7�10 K
and in a �eld of 0.02 T. This non-Fermi liquid charac-
ter slowly vanishes as external magnetic �eld increases
and for �elds above 0.5 T the susceptibility apparently
recovers the Fermi liquid property. It should be re-
called that the power-law dependence of the susceptibil-
ity, [χ(T )− χ0] ∝ T−n with n ∼ 0.5 has previously been
found in some non-Fermi liquid alloys, showing instability
due to nearness to antiferromagnetic Th1−xUxPt2Si2 [4]
or ferromagnetic Th1−xUxCu2Si2 [5] and CePt1−xRhx [6]
ordering. For URu0.68Pd0.32Ge, a large magnetic sus-
ceptibility at 1.7 K (≈ 23 emu/mol) provides additional
backing of the closeness to a magnetic order. In such
a system, non-linear e�ects are expected to be sizeable.
We evaluated non-linear susceptibilities based on a rela-
tion: M(H) = M0 + χ1H + χ3

3! H
3 + χ3

5! H
5, where M0 is

spontaneous magnetization, χ1 is the linear susceptibility
and χ3, χ5 are nonlinear ones.

The results of a �t of data are shown as solid lines
in Fig. 2. We found χ3 = −1.1 × 10−3 µB/T

3 and
χ5 = 4.7× 10−7 µB/T

7 from the �tting of the 2 K mag-
netization. The absolute values of χ3, χ5 decrease with
increasing temperature and at 10 K are negligibly small.
This fact means that the non-linear e�ect no longer exists
at temperatures above 10 K, where the magnetization is
practically linear with applied �elds.

Fig. 2. Isotherms of URu0.68Pd0.32Ge. The solid lines
are theoretical curves.

The speci�c heat Cp(T ) data of URu0.68Pd0.32Ge are
depicted in Fig. 3. The low-temperature Cp(T ) data
show a tendency to rise, indicative of a large in�u-
ence of electron correlations. We tried to analyze low-
temperature data with a sum: Cp(T )/T = γ + βT 2 −
δT 2ln(T/Tsf ), predicted for nearly ferromagnetic Fermi
liquids [7]. In the equation, the �rst term is the electronic
speci�c coe�cient, the second is associated with the crys-
tal lattice and the last one denotes the contribution from
the spin �uctuations. However, the agreement between
the experimental and theoretical data is not satisfactory.

Fig. 3. The speci�c heat of URu0.68Pd0.32Ge plotted
as Cp/T versus lnT . The solid line is a theoretical
�t. The inset shows �eld dependence of the ratio Cp/T
at 0.4 K.

It appears that for a good description a power law
variation T 1/2 has to be introduced. The best �t of
data between 0.4 K and 4 K to a sum: Cp(T )/T =

γ + βT 2 − b
√
T , yields γ = 301(2) mJ/(mol K2), β =

0.43 mJ/(mol K4) and b = 65(1) mJ/(mol K5/2). In-
terestingly, similar Cp(T ) behaviour has been observed
in many intermetallics alloys with magnetic instabilities,
e.g., U2Co2Sn [8], (U0.8La0.2)2Zn [9], YbCu3.5Al1.5 [10]
and U0.07Th0.93(Ru,Pt)2Si2 [11]. We notice that the
Cp(T )/T ∼ −

√
T dependence may account for non-Fermi

liquid behavior. According to Hertz [12], Millis [13], and
Moriya and Takimoto [14], the square root temperature
dependence of Cp/T is predicted for antiferromagnetic
spin �uctuations at d = 3, contrary to ferromagnetic cou-
pling, where a dependence ∝ Cp(T )/T−ln(T/T0) was an-
ticipated.
A �eld-study of Cp(T ) reveals dramatic change of the

Cp(T ) dependence. An application of magnetic �elds
rapidly suppresses the value of Cp/T at 0.4 K. Above
1 T the Fermi-liquid behavior of Cp(T ) is recovered and
the Sommerfeld ratio decreases linearly with �eld (see in-
set of Fig. 3). It is worthwhile to emphasize that even
in a high �eld of 9 T, the Sommerfeld ratio Cp/T re-
mains still large enough, which certainly points to a mod-
erate heavy-fermion behaviour. We estimated the Wil-
son ratio [15] RW = π2k2

Bχ(0)/[µ2
Bµ

2
effγ(0)] to amount

to 7.7, if one assumes the values χ(0) = χ(2) K) and
γ(0) = Cp/T at 2 K. Such a large value of RW is ob-
served in systems with strongly magnetic correlations.
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The electrical resistivity ρ(T ) of URu0.68Pd0.32Ge is
plotted in Fig. 3. Due to the presence of microcracks in
the sample, the resistivity normalized to a room temper-
ature value ρ(T )/ρ300K is given. With decreasing tem-
perature the ρ(T )/ρ300K curve shows deviations from an
ordinary metallic feature. An observed negative deriva-
tive dρ(T )/dT suggests the single-ion Kondo-type inter-
action, while the maximum around 150 K noti�es the de-
velopment of coherence state. Below 3.5 K, we observe a
ρ(T ) upturn. The reason may be an electron�electron
correlation or Kondo-like spin dependent scattering.
Consequently, we �tted the low-temperature data to

equations: ρ(T )/ρ300K = ρres − cT 1/2
and ρ(T )/ρ300K =

ρres − cln(T ), respectively. However, the experimental
data could not well satisfy above equations. Instead,
the data between 0.4 and 10 K are well represented by
ρ(T )/ρ300K = ρres − cln(T ) + AT 3/2, where ρres is a
renormalized residual resistivity, c and A are constants
(see solid line in Fig. 4).

Fig. 4. Temperature dependence of the electrical resis-
tivity of URu0.68Pd0.32Ge. The solid line is a theoretical
curve. Inset shows �eld dependence of the magnetore-
sistance at 0.9 K.

The magnetoresistance, MR, de�ned as ∆ρ/ρ(0) =
[ρ(H,T ) − ρ(0)]/ρ(0), measured in �elds up to 9 T
(see inset of Fig. 4) is positive. There are two well-
known mechanisms responsible for a positive magnetore-
sistance; i.e., Lorentz force and antiferromagnetic corre-
lation. The �rst mechanism exists in all metallic systems.
Owing to the reduction of the e�ective mean free path of
the conduction carriers, the MR follows H2-dependence
in low �elds and saturates in high �elds. In the stud-
ied sample, the mechanism may be di�erent than the
conventional Lorentz force, since neither ∆ρ/ρ(0) ∼ H2

nor a saturation is not found. So, we rather suspect
URu0.68Pd0.32Ge to be a system with dominating an-
tiferromagnetic correlation.
In summary, we investigated low-temperature proper-

ties of URu0.68Pd0.32Ge. The observed power divergent
resistivity and speci�c heat in good agreement with the
theories for spin �uctuations [12�14]. However, the �nd-
ing χ(T ) ∝ T−0.48 is in disagreement with any of the
predictions from above models, where for antiferromag-
netic spin �uctuations χ(T ) ∝ T−3/2 should be expected.

The departure is not very surprising because of a nearness
to magnetic order, which may give additional contribu-
tion to the magnetic susceptibility.
For discussion, it is interesting to compare the

behaviour between two related solid solutions
URu1−xRhxGe [16, 17] and URu1−xPdxGe. In
both systems, the long-range order can be induced
just at a critical value of valence electrons/f.u., i.e.,
approximately 8.65 e/f.u. This proves that the number
of sd -electrons of T-metals plays a role in establishing
magnetic order. Further, the occurrence of non-Fermi
liquid behaviour in URu0.68Pd0.32Ge is very reminiscent
of the case of URu0.32Rh0.68Ge [16, 17]. In particular,
the latter composition has been regarded as a f -electron
system with a ferromagnetic quantum critical point
at ambient pressure [16]. Thus, a question relating to
possible quantum criticality in URu0.68Pd0.32Ge remains
open and it encourages further investigations.
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