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The extended Hubbard model in the zero-bandwidth limit is studied. The e�ective Hamiltonian consists
of (i) on-site U interaction, (ii) intersite density�density interaction W , and (iii) Ising-like magnetic exchange
interaction J between the nearest-neighbors. We present rigorous (and analytical) results obtained within the
transfer-matrix method for 1D chain in two particular cases: (a) W = 0 and n = 1; (b) U → +∞ and n = 1/2
(W 6= 0, J 6= 0). We obtain the exact formulae for the partition functions which enables to calculate thermodynamic
properties such as entropy, speci�c heat (c), and double occupancy per site. In both cases the system exhibits
an interesting temperature dependence of c involving a characteristic two-peak structure. There are no phase
transitions at �nite temperatures and the only transitions occur in the ground state.
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1. Introduction

The interplay between density-density and magnetic
interactions is relevant to a broad range of important ma-
terials such as manganites, multiferroics, organics, and
other strongly correlated electron systems [1�9].
In this paper we present some exact results obtained

within transfer matrix method for the zero-bandwidth
extended Hubbard model with density�density and Ising-
like magnetic interactions on the one-dimensional chain
(d = 1). The 1D-Hamiltonian considered has a form

Ĥ =

L∑
i=1

[
Un̂i↑n̂i↓ +Wn̂in̂i+1 − 4Jŝzi ŝ

z
i+1 − µn̂i

]
, (1)

where ĉ+iσ denotes the creation operator of an electron
with spin σ (σ =↑, ↓) at site i, n̂iσ = ĉ+iσ ĉiσ, n̂i =

∑
σ n̂iσ,

and ŝzi = (1/2)(n̂i↑ − n̂i↓). i+ 1 is the nearest neighbor
of the i-site in the chosen direction (from two possible
directions in a chain). We assume the periodic boundary
conditions, i.e. nL+1σ = n1σ, where L is a number of
sites in the chain and niσ = 〈n̂iσ〉. J0 = zJ , where z = 2
is a number of the nearest neighbors.
All the terms of Hamiltonian (1) commute with one

another and are diagonal in the representation of occu-
pancy numbers. It is convenient to use the transfer ma-
trix method [10] to �nd the grand partition function Z.
Hamiltonian (1) can be treated as a simple e�ective

model of insulators, in which interactions U , W and J
are assumed to include all the possible contributions and
renormalizations. Notice that ferromagnetic (J > 0) in-
teractions are simply mapped onto the antiferromagnetic
ones (J < 0) by rede�ning the spin direction on one sub-
lattice in lattices decomposed into two interpenetrating
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sublattices. Thus, we restrict ourselves to a case of J > 0.
Exact solutions of model (1) for some particular cases

have been obtained for the one-dimensional case (T ≥ 0)
employing the method based on the equations of motion
and Green function formalism [11�13] or the transfer-
matrix method [14�17]. Extensive mean-�eld studies
(exact result in d → +∞) [18�27] and some Monte
Carlo simulations (d = 2) [28�29] of model (1) have
been also performed. Moreover, the exact ground state
(T = 0) results have been found for 2 ≤ d < +∞ [30�34].
We present rigorous results for partition functions

obtained within the transfer-matrix method for one-
dimensional model (1) in two particular cases: (a)W = 0
and n = 1; (b) U → +∞ and n = 1/2 (W 6= 0, J 6= 0).

2. Results and discussion

(a) For the case of W = 0, a typical element of the
transfer matrix for model (1) is de�ned as

Pi,i+1 ≡ 〈ni↑ni↓|P |ni+1↑ni+1↓〉 =

exp (−β [(U/2) (ni↑ni↓ + ni+1↑ni+1↓)− (µ/2)ni

−(µ/2)ni+1 − J(ni↑ − ni↓)(ni+1↑ − ni+1↓)]) , (2)

where |ni↑ni↓〉 ∈ {|00〉, |01〉, |10〉, |11〉} denotes a single-
site state at site i, β = 1/(kBT ) is the inverse temper-
ature and kB is the Boltzmann constant. One obtains
16 matrix elements and the problem is reduced to diag-
onalization of the matrix P̌ of the form

P̌ =


1 x0 x0 u0x

2
0

x0 m0x
2
0 m−10 x20 u0x

3
0

x0 m−10 x20 m0x
2
0 u0x

3
0

u0x
2
0 u0x

3
0 u0x

3
0 u20x

4
0

 , (3)

where x0 = exp(βµ/2), u0 = exp(−βU/2) and m0 =
exp(βJ0/2). One can show that three eigenvalues of P̌
(λl, l = 1, 2, 3) are roots of a cubic equation

λ3 − λ2(1 + 2m0x+ ux2)− λ
{
xm−20 (1−m0)

(284)
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×[x+m0x+m3
0x+m2

0(2 + x+ 2ux2)]
}

+x2m−20 (1−m0)3(1 +m0)(1 + ux2) = 0, (4)

where x = x20 and u = u20, while λ4 = 0.

So far the number N of particles in the chain has not
been speci�ed. It can be done in a standard way by solv-
ing the following equation: N = − (∂Ω/∂µ)β , where Ω
is the grand canonical potential, Ω = −kBT lnZ. In the
thermodynamic limit L→∞ the grand sum of states Z is
derived as Z = λLM, where λM is the maximum eigenvalue

of P̌ (assumed to be nondegenerate). Therefore, the
equation for N can be rewritten as ∂λM/∂x = nλM/x,
where n = N/L is electron density in a system.

In the case of half-�lling (n = 1), the condition for N
can be solved analytically for arbitrary U and in such a
case the chemical potential is derived as µ = U/2 and λM
takes the form

λM=1+ exp

(
βU

2

)
cosh

(
βJ0

2

)
+
X

2
exp

(
βY

2

)
, (5)

where X =
√

1 + Z1 − 4Z2 − 4Z3 + 16Z4 + 4Z5 + 2Z6,
Y = U − J0, Z1 = exp (2βJ0), Z2 = exp (−βY/2),
Z3 = exp (βA/2), Z4 = exp (βB/2), Z5 = exp (−βY ),
Z6 = exp (βJ0), and A = 3J0 − U , B = 2J0 − U .
(b) The limit U → +∞ corresponds to the subspace

where the double occupancy of sites is excluded (by elec-
trons for n < 1 or holes for n > 1). For this case the
transfer matrix elements for model (1) are de�ned as

Ri,i+1 ≡ 〈ni↑ni↓|R|ni+1↑ni+1↓〉 =

exp (−β (W (ni↑+ni↓)(ni+1↑+ni+1↓)

−(µ/2) (ni+ni+1)−J(ni↑−ni↓)(ni+1↑−ni+1↓))) ,(6)

where |ni↑ni↓〉 ∈ {|00〉, |01〉, |10〉} denotes a single-site
state at site i in the limit U → +∞. Therefore, in this
case the matrix Ř has the following form:

Ř =

 1 x0 x0
x0 m0x

2
0w0 m−10 x20w0

x0 m−10 x20w0 m0x
2
0w0

 , (7)

where x0 = exp(βµ/2), w0 = exp(−βW0/2) and m0 =
exp(βJ0/2). The eigenvalues of P̌ are roots λl (l =
1, 2, 3) of the following cubic equation:

λ3 − λ2 (1 + 2m0xw0)

−λx
[
2− 2m0w0 + xw

(
m−20 −m2

0

)]
+
(
1−m−20

)
x2w

(
1 +m2

0 − 2m0w
−1
0

)
= 0, (8)

where x = x20 and w = w2
0.

In this case the equation forN can be solved analytically for
n = 1/2. One �nds that µ = W0/2− kBT ln (2 cosh (βJ0/2)),
and λM is derived

λM = 1 + exp (βW0/4)
√

sech (βJ0/2). (9)

The knowledge of explicit form of the sum of states Z al-
lows us to obtain thermodynamic characteristics of the sys-
tem for arbitrary temperature. Local magnetic moment γ
is de�ned by: γ = (1/2L)

∑
i 〈|ni↑ − ni↓|〉. It is related

with the double occupancy D per site (de�ned by the for-
mula: D = (1/L)〈n̂i↑n̂i↓〉 = (∂f/∂U)T ) by the relation:

γ = n/2 − D, where f = ω + nµ is the free energy of the
system per site (ω ≡ Ω/L). The entropy s and the spe-
ci�c heat c (per site) can be derived as: s = −∂f/∂T and
c = −T (∂2f/∂T 2). Because the explicit forms of the partition
function Z in both cases are known and the derivation of the
above thermodynamical characteristics (i.e. D, s, c) is rather
straightforward (ω = −kBT lnλM), below we only summarize
the most important conclusions following from the analysis of
Eqs. (5) and (9).

One can observe that the system exhibits an interesting
temperature dependence of c involving a characteristic two-
peak structure for some values of model parameters in the
cases analyzed. In both cases considered above there are
no phase transitions at �nite temperatures (in the agreement
with Mermin�Wagner theorem [35]) and the only transitions
can occur in the ground state.

2.1. (a) The case of W = 0 and n = 1

For large U/J0 c exhibit two-peak structure, whereas for
U . 6 peaks merge and there is a single peak in T -dependence
of c (labeled as T1 + T2, cf. Fig. 1). For −1 < U/J0 . −0.9
two peaks of c appear again. The broad one (at higher
temperature T1) is connected with continuous changes in
short-range charge on-site ordering (associated with U term).
The narrow one (at lower temperature T2 < T1) is connected
with short-range intersite magnetic ordering (J term). With
decrease of U/J0 their locations move towards lower temper-
atures. If U/J0 < −1 the single maximum of c (connected
with short-range on-site ordering) exists only and it moves
toward higher temperatures with increasing of |U |/J0. In the
limit U → +∞ (n = 1) the speci�c heat exhibits a single

peak described by cIs = kB [(βJ0/2)× sech (βJ0/2)]2, which
corresponds to 1D-Ising model in the absence of magnetic
�eld (the peak connected with on-site ordering is �located� at
T1 → +∞). The divergence of c at U/J0 → −1 and T2 → 0
indicates that the �rst-order transition occurs between the
nonordered state of double occupied sites (γ = 0) and the
ferromagnetic homogeneous phase (stable for U/J0 > −1),
where all sites are singly occupied (γ = 1/2). One can derive
the same conclusion of T = 0 properties of the system from
a behavior of the entropy s. For U/J0 > −1 the system is
magnetically ordered with s̄(0) = 0 (a number of states is
g = 2, s = kBs̄ = (kB/L) ln g). For U/J0 < −1 the system
consists of nonordered on-site electron pairs and s̄(0) = ln 2
(g = 2L). At U/J0 → −1 s̄(0) = ln 2. Notice that in the limit
T →∞ the entropy s̄→ 2 ln 2 for any U/J0.

Our results for W = 0 and n = 1 are in an agreement with
the results of Ref. [11] obtained using the Green function for-
malism, whereas the numerical analyses of (4) and the con-
dition for N (for arbitrary n or µ) should be consistent with
the results of Ref. [13].

Fig. 1. The speci�c heat c as a function of kBT/J0 for
several values of U/J0 (as labeled); n = 1, W = 0.



286 K.J. Kapcia, W. Kªobus, S. Robaszkiewicz

2.2. (b) The case of n = 1/2 for U → +∞
At T = 0 for W/J = 1 the transition between the homoge-

neous charge-ordered (CO) phase (for W/J > 1) and phase
separated (PS) state occurs, cf. also Ref. [24]. For W/J < 1
the system is divided into two equal-sized domains: one fer-
romagnetically ordered completely �lled by electrons (n = 1)
and the other empty (n = 0). The behavior of c at T > 0
is very similar to that discussed in the previous case (sim-
plifying, for qualitative discussion only U/J0 ↔ −W/J re-
placement is needed, short-range charge order peak in c is
associated with W term). In the limit W/J → −∞ c exhibits
a single maximum described by the characteristic dependence
for 1D-Ising model, but in such a case the speci�c heat c∗ of
the system is twice smaller than the result cIs obtained in
a case of n = 1, W = 0 (c∗ = cIs/2). It can be derived that
at T = 0: (i) for W/J > 1: s̄(0) = (1/2) ln 2 (the CO phase,

g = 2(L/2+1)) and (ii) for W/J < 1: s̄(0) = 0 (the PS:F/NO
state, g = 2L). If W = J the ground state is highly degener-

ated and s̄(0) = ln(1 +
√

2) (cf. Fig. 2). In the limit T →∞
the entropy s̄→ (3/2) ln 2.

Fig. 2. The entropy s/kB ≡ s̄ as a function
(a) of kBT/J0 and (b) of W/J (U → +∞, n = 1/2, val-
ues of other model parameters as labeled).

The detailed discussion of thermodynamic properties of
one-dimensional model (1) in a general case will be the subject
of a subsequent paper.

Acknowledgments

The work (K.J.K., S.R.) has been �nanced by National

Science Centre (NCN, Poland) as a research project under

grant No. DEC-2011/01/N/ST3/00413 and a doctoral schol-

arship No. DEC-2013/08/T/ST3/00012. K.J.K. thanks for

the �nancial support from the ESF � OP �Human Capi-

tal� � POKL.04.01.01-00-133/09-00 � �Proinnowacyjne ksz-

taªcenie, kompetentna kadra, absolwenci przyszªo±ci�. K.J.K.

and W.K. thank the Foundation of Adam Mickiewicz Uni-

versity in Pozna« for the support from its scholarship pro-

gramme.
References

[1] R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev.
Mod. Phys. 62, 113 (1990).

[2] T. Goto, B. Lüthi, Adv. Phys. 52, 67 (2003).

[3] E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344, 1
(2001).

[4] J. van den Brink, D.I. Khomskii, J. Phys. Condens.
Matter 20, 434217 (2008).

[5] W.R. Czart, S. Robaszkiewicz, Acta Phys. Pol. A
106, 709 (2004); W.R. Czart, S. Robaszkiewicz,
Phys. Status Solidi B 243, 151 (2006).

[6] W.R. Czart, S. Robaszkiewicz, Acta Phys. Pol. A
109, 577 (2006); W.R. Czart, S. Robaszkiewicz,
Mater. Sci.-Poland 25, 485 (2007).

[7] K. Kapcia, Acta Phys. Pol. A 121, 733 (2012).

[8] K. Kapcia, J. Supercond. Nov. Magn. 26, 2647
(2013).

[9] K.J. Kapcia, Acta Phys. Pol. A 127, 204 (2015);
K.J. Kapcia, J. Supercond. Novel Magn. in press
(2015); DOI:10.1007/s10948-014-2906-4 .

[10] G.F. Newell, E.W. Montroll, Rev. Mod. Phys. 25,
353 (1953).

[11] F. Mancini, F.P. Mancini, Phys. Rev. E 77, 061120
(2008).

[12] F. Mancini, E. Plekhanov, G. Sica, Cent. Eur. J.
Phys. 10, 609 (2012).

[13] F. Mancini, E. Plekhanov, G. Sica, Eur. Phys. J. B
86, 224 (2013).

[14] F. Mancini, E. Plekhanov, G. Sica, J. Phys. Conf.
Series 391, 012148 (2012).

[15] R.A. Bari, Phys. Rev. B 3, 2662 (1971).

[16] G. Beni, P. Pincus, Phys. Rev. B 9, 2963 (1974).

[17] R.S. Tu, T.A. Kaplan, Phys. Status Solidi B 63, 659
(1974).

[18] R. Micnas, S. Robaszkiewicz, K.A. Chao, Phys.
Rev. B 29, 2784 (1984).

[19] K. Kapcia, W. Kªobus, S. Robaszkiewicz, Acta. Phys.
Pol. A 118, 350 (2010).

[20] K. Kapcia, S. Robaszkiewicz, J. Phys. Condens.
Matter 23, 105601 (2011).

[21] K. Kapcia, S. Robaszkiewicz, J. Phys. Condens.
Matter 23, 249802 (2011).

[22] K. Kapcia, S. Robaszkiewicz, Acta Phys. Pol. A 121,
1029 (2012).

[23] W. Kªobus, K. Kapcia, S. Robaszkiewicz, Acta. Phys.
Pol. A 118, 353 (2010).

[24] K. Kapcia, W. Kªobus, S. Robaszkiewicz, Acta Phys.
Pol. A 121, 1032 (2012).

[25] S. Robaszkiewicz, Phys. Status Solidi B 59, K63
(1973).

[26] S. Robaszkiewicz, Phys. Status Solidi B 70, K51
(1975).

[27] S. Robaszkiewicz, Acta Phys. Pol. A 55, 453 (1979).

[28] S. Murawski, K. Kapcia, G. Pawªowski,
S. Robaszkiewicz, Acta Phys. Pol. A 121, 1035
(2012).

[29] S. Murawski, K.J. Kapcia, G. Pawªowski, S.
Robaszkiewicz, Acta Phys. Pol. A 127, 281 (2015).

[30] S. Murawski, K. Kapcia, G. Pawªowski,
S. Robaszkiewicz, Acta Phys. Pol. A 126, A-
110 (2014).

[31] S.A. Pirogov, Ya.G. Sinai, Theor. Math. Phys. 25,
1185 (1975); S.A. Pirogov, Ya.G. Sinai, Theor. Math.
Phys. 26, 39 (1976).

[32] J. J¦drzejewski, Z. Phys. B 48, 219 (1982); J. J¦-
drzejewski, Z. Phys. B 59, 325 (1985).

[33] U. Brandt, J. Stolze, Z. Phys. B 62, 433 (1986).

[34] J. J¦drzejewski, Physica A 205, 702 (1994).

[35] N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133
(1966).

http://dx.doi.org/10.1103/RevModPhys.62.113
http://dx.doi.org/10.1103/RevModPhys.62.113
http://dx.doi.org/10.1080/0001873021000057114
http://dx.doi.org/10.1016/S0370-1573(00)00121-6
http://dx.doi.org/10.1016/S0370-1573(00)00121-6
http://dx.doi.org/10.1088/0953-8984/20/43/434217
http://dx.doi.org/10.1088/0953-8984/20/43/434217
http://przyrbwn.icm.edu.pl/APP/PDF/106/a106z521.pdf
http://przyrbwn.icm.edu.pl/APP/PDF/106/a106z521.pdf
http://dx.doi.org/10.1002/pssb.200562502
http://przyrbwn.icm.edu.pl/APP/PDF/109/a109z421.pdf
http://przyrbwn.icm.edu.pl/APP/PDF/109/a109z421.pdf
http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z4p104.pdf
http://dx.doi.org/10.1007/s10948-013-2152-1
http://dx.doi.org/10.1007/s10948-013-2152-1
http://dx.doi.org/10.12693/APhysPolA.127.204
http://dx.doi.org/10.1007/s10948-014-2906-4
http://dx.doi.org/10.1007/s10948-014-2906-4
http://dx.doi.org/10.1103/RevModPhys.25.353
http://dx.doi.org/10.1103/RevModPhys.25.353
http://dx.doi.org/10.1103/PhysRevE.77.061120
http://dx.doi.org/10.1103/PhysRevE.77.061120
http://dx.doi.org/10.2478/s11534-012-0017-z
http://dx.doi.org/10.2478/s11534-012-0017-z
http://dx.doi.org/10.1140/epjb/e2013-40046-y
http://dx.doi.org/10.1140/epjb/e2013-40046-y
http://dx.doi.org/10.1088/1742-6596/391/1/012148
http://dx.doi.org/10.1088/1742-6596/391/1/012148
http://dx.doi.org/10.1103/PhysRevB.3.2662
http://dx.doi.org/10.1103/PhysRevB.9.2963
http://dx.doi.org/10.1002/pssb.2220630229
http://dx.doi.org/10.1002/pssb.2220630229
http://dx.doi.org/10.1103/PhysRevB.29.2784
http://dx.doi.org/10.1103/PhysRevB.29.2784
http://przyrbwn.icm.edu.pl/APP/PDF/118/a118z2p30.pdf
http://przyrbwn.icm.edu.pl/APP/PDF/118/a118z2p30.pdf
http://dx.doi.org/10.1088/0953-8984/23/10/105601
http://dx.doi.org/10.1088/0953-8984/23/10/105601
http://dx.doi.org/10.1088/0953-8984/23/24/249802
http://dx.doi.org/10.1088/0953-8984/23/24/249802
http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z5p11.pdf
http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z5p11.pdf
http://przyrbwn.icm.edu.pl/APP/PDF/118/a118z2p31.pdf
http://przyrbwn.icm.edu.pl/APP/PDF/118/a118z2p31.pdf
http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z5p12.pdf
http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z5p12.pdf
http://dx.doi.org/10.1002/pssb.2220590155
http://dx.doi.org/10.1002/pssb.2220590155
http://dx.doi.org/10.1002/pssb.2220700156
http://dx.doi.org/10.1002/pssb.2220700156
http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z5p13.pdf
http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z5p13.pdf
http://dx.doi.org/10.12693/APhysPolA.127.281
http://dx.doi.org/10.12693/APhysPolA.126.A-110
http://dx.doi.org/10.12693/APhysPolA.126.A-110
http://dx.doi.org/10.1007/BF01040127
http://dx.doi.org/10.1007/BF01040127
http://dx.doi.org/10.1007/BF01420583
http://dx.doi.org/10.1007/BF01307438
http://dx.doi.org/10.1007/BF01303574
http://dx.doi.org/10.1016/0378-4371(94)90231-3
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133

