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In this work we focus on the study of phase separation in the zero-bandwidth extended Hubbard with nearest-
neighbors intersite Ising-like magnetic interactions J and on-site Coulomb interactions U . The system has been
analyzed by means of the Monte Carlo simulations (in the grand canonical ensemble) on two-dimensional square
lattice (with N = L × L = 400 sites) and the results for U/(4J) = 2 as a function of chemical potential and
electron concentration have been obtained. Depending on the values of interaction parameters the system exhibits
homogeneous (anti-)ferromagnetic or non-ordered phase as well as phase separation state. Transitions between ho-
mogeneous phases (i.e. antiferromagnetic�non-ordered transitions) can be of �rst or second order and the tricritical
point is also present on the phase diagrams. The electron compressibility K is an indicator of the phase separation
and that quantity is of particular interest of this paper.
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1. Introduction

Magnetic insulators are a class of materials realized in
many various compounds. An example of them are mate-
rials known as transition metal cluster compounds with
general formula AM4X8, where A � trivalence metal,
M � transition metal, X � chalcogenide [1�3]. Phase
separations can occur in magnetic insulators in various
circumstances and their theoretical understanding is very
current topic. Moreover, instabilities such as stripe for-
mation (as well as charge order) can occur in high-Tc su-
perconductors (e.g. in cuprates) [4]. A simpli�ed model
to describe behavior of such materials is the extended
Hubbard model with intersite magnetic interactions [5�
10]. In this work we study the zero-bandwidth limit of
the extended Hubbard model. The Hamiltonian of this
model has the form

Ĥ = U
∑
i

n̂i↑n̂i↓ + 2J
∑
〈i,j〉

ŝzi ŝ
z
j − µ

∑
i

n̂i, (1)

where U is the on-site density�density interaction, J is
z-component of the intersite magnetic exchange interac-
tion, and µ is chemical potential. The interactions are ef-
fective model parameters and are assumed to include all
the possible contributions and renormalizations.

∑
〈i,j〉

restricts the summation to nearest neighbors (indepen-
dently). n̂i = n̂i↑ + n̂i↓ is total electron number on site i
and ŝzi = (1/2)(n̂i↑ − n̂i↓) is z-component of total spin
at i site. n̂iσ = ĉ+iσ ĉiσ is electron number with spin σ on
site i, where ĉ+iσ and ĉiσ denote the creation and annihi-
lation operators, respectively, of an electron with spin σ
(σ =↑, ↓) at the site i. The electron concentration n is de-
�ned as n = (1/N)

∑
i〈n̂i〉, where N is the total number

of sites.
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The model studied exhibits two symmetries:
(i) the symmetry between J > 0 (antiferromagnetic) and
J < 0 (ferromagnetic) cases and (ii) the electron�hole
symmetry. Because of these symmetries only analyses
for 0 ≤ n ≤ 1 and J > 0 have been performed.

We have used the Monte Carlo (MC) simulations to
analyze the system. Simulations have been done using
Hamiltonian described above on two-dimensional square
lattice with N = L × L sites in the grand canonical en-
semble, which allows us to obtain e.g. chemical poten-
tial dependence of electron concentration curves � n(µ).
The Monte Carlo algorithm used in this analysis con-
sists of three steps: (i) creation, (ii) destruction, and
(iii) moving of particle, all of them with appropriate prob-
ability P ∼ exp (∆E/(kBT )) [11�14]. It is worth noting
that for constant values of concentration a simpler algo-
rithm with only step (iii) � �move� would be su�cient.
However, addition of the grand canonical parts (creation
and destruction) allows one for more detailed analysis in
full range of chemical potential and concentration. Un-
fortunately, addition of chemical potential term in the
Hamiltonian prevents us from implementing cluster up-
dates algorithm, so only local updates [15] are used here.
The details of the algorithm used can be found in [11�14].

The exact ground state (T = 0) results for this model
have been found in the case of a d = 1 chain [16, 17] using
the Green function formalism as well as for 2 ≤ d < +∞
case [18, 19]. The rigorous results for �nite temperatures
T > 0 have been also obtained [17, 20] for d = 1 chain
(an absence of long-range order at T > 0). Within the
variational approach (with on-site U term treated exactly
and mean �eld decoupling of intersite term J) the model
has been analyzed for half-�ling (n = 1) [21, 22] as well
as for arbitrary electron concentration 0 ≤ n ≤ 2 [23]
(these results are rigorous in the limit of in�nite dimen-
sions d → +∞). Our preliminary Monte Carlo (MC)
results have been presented in [13, 14] for L = 10
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and on-site repulsion: U/(4J) = 1, 10 (corresponding
to rather weak and strong coupling, respectively) [13]
as well as for L = 20 and U/(4J) = 1 [14].
In the present paper we investigate in detail the phase

diagram and thermodynamic properties of the model for
arbitrary electron concentration n ≤ 1 and arbitrary
chemical potential µ̄ ≤ 0 (µ̄ = µ−U/2) in the whole range
of temperatures for U/(4J) = 2 and L = 20. In particu-
lar, we focus on a behavior of an electron compressibility.
The corresponding results for n > 1 (µ̄ > 0) are obvious
because of the electron�hole symmetry of the model on
alternate lattices mentioned previously.

2. Results and discussion (U/(4J) = 2)

Finite temperature phase diagrams for this model
were obtained using MC simulations for U/(4J) = 2
(and L = 20) as a function of µ̄/4J and n are presented
in Fig. 1a and b, respectively.
The behavior of this system for �xed µ̄ is rather sim-

ple (Fig. 1a), with both �rst-order (below T -point) and
second-order (above T -point) phase transitions separat-
ing non-ordered (NO) and antiferromagnetic (AF) phases
with tricritical point T located at kBT/4J = 0.205 ±
0.003, µ̄/4J = −1.405 ± 0.007 (n ≈ 0.58). The location
of T -point has been determined using hysteresis anal-
ysis [14]. In Fig. 1a �heating� and �cooling� label the
boundaries obtained by simulation performed with in-
creasing and decreasing temperature whereas �average�
is the average of these two results. They di�er if the AF�
NO transition is of �rst order. Details of this method can
be found in [14].
With simulations done for �xed µ̄ and kBT/4J vs.

µ̄/4J , it is possible to obtain phase diagrams as a function
of n (shown in Fig. 1b) by determining electron density
above (n−) and below (n+) the AF�NO phase transition
(for �xed µ̄). The �rst-order AF�NO boundary for �xed
µ̄ splits into two boundaries (i.e. PS�AF and PS�NO)
for �xed n. At su�ciently low temperatures, i.e. below
T -point, a phase separated (PS: AF/NO) state occurs.
The PS state is a coexistence of two (AF and NO) ho-
mogeneous phases. At higher temperatures (i.e. above
T -point) the AF�NO transition is second-order one.
An objective indicator of a PS state existence is the

evolution of the compressibility K of the system [11, 12].
For a system with variable number of particles it can be
de�ned as

1

K
= n2

(
∂µ

∂n

)
T,U,J

. (2)

From this de�nition it follows that at a �xed µ the num-
ber of particles in an open system can �uctuate freely
(precisely, in some de�ne range) when K → ±∞. Such
a behavior is connected with an occurrence of the PS
states in de�ne range of n. At the same constant total
free energy of the system the number of domains as well
as their distribution can change. Hence, the phase sepa-
ration states are �highly unstable� in that sense that they
are subjected to continuous �uctuations of local density
(but the total density n is constant).

Fig. 1. The phase diagrams of the model for U/4J = 2:
(a) kBT/4J vs. µ̄/4J and (b) kBT/4J vs. n (L = 20).
T denotes a tricritical point. In part (a) �heating� and
�cooling� label the boundaries obtained by simulation
performed with increasing and decreasing temperature,
whereas �average� is the average of these two results.
They di�er if the AF�NO transition is �rst-order.
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Fig. 2. Compressibility K as a function of tempera-
ture T for constant values of electron concentration n
(as labeled) for L = 20. For n > 0.58 there are �uctua-
tions of K associated with second-order AF�NO phase
transitions.

In Fig. 2 the compressibilityKn2 is plotted versus tem-
perature kBT/4J for several constant values of n. As is
clearly seen, close to the boundaries of the PS:AF/NO
state occurrence plotted in Fig. 1b, the value of com-
pressibility abruptly increase and K → +∞ at transi-
tion temperature, indicating an existence of the phase
separation state. At higher temperatures and for larger
concentrations than those corresponding to the T -point
(n >∼ 0.58) there are compressibility �uctuations related
to second order AF�NO phase transition as shown in
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Fig. 2 at higher temperatures. They are signi�cantly
smaller than the �uctuations close to the boundaries be-
low which the PS:AF/NO state occurs.
Figure 3 presents a map of compressibility on

kBT/4J − n plane together with the phase boundaries
derived in Fig. 1b plotted for the comparison. An in-
crease of compressibility close to the second-order AF�
NO boundary is clearly seen. The boundary between
homogeneous phases and phase separation state is also
visible, with the compressibility close to the boundary
being at least an order of magnitude greater than those
inside the homogeneous phases. As it was said earlier,
in the case of phase separation occurrence K → ∞, so
no points are shown inside the region of the PS state
occurrence in Fig. 3.
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Fig. 3. A map of compressibility Kn2 on kBT/4J − n
plane (for L = 20). Solid black curves indicate the
phase boundaries derived in Fig. 1b plotted for the
comparison.

Notice that the results presented are in good qualita-
tive agreement with mean �eld calculations using vari-
ational approach presented in [13, 21�25]. When com-
paring these results one should keep in mind di�erences
between these two methods, as the VA is exact only for
in�nite dimensions d → ∞. The drawback of Monte
Carlo simulations is long thermalization time, which pre-
vents us from obtaining results for the ground state and
very low temperatures, as in these conditions electrons
have very small probability of escaping local energy min-
ima. Behavior of the model considered in the case of
�nite band (t 6= 0) is very interesting and mostly open
problem in the general case [5�10].
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