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Polaron States in a CuO Chain
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We introduce a one-dimensional model for a CuO chain, with holes and S = 1/2 spins localized in 3dx2−y2
orbitals, and pσ oxygen orbitals without holes in the ground state. We consider a single hole doped at an oxygen
site and study its propagation by spin-�ip processes. We develop the Green function method and treat the hole-spin
coupling in the self-consistent Born approximation, similar to that successfully used to study polarons in the regular
t�J model. We present an analytical solution of the problem and investigate whether the numerical integration is
a good approximation to this solution.
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1. Introduction

Soon after the discovery of high-Tc superconduc-
tors (HTS), it was realized that the t�J model could be
regarded as the prime candidate for the theoretical de-
scription of the phenomenon [1]. A deeper insight into
the dynamics of a hole propagation in a Mott insulator
with antiferromagnetic (AF) order might yield a clue to
the understanding of the origin of superconductivity in
cuprates [2]. The e�ective t�J model arises from map-
ping the three-band p�d model [3, 4] onto the copper
dx2−y2 states and provides the simplest description of the
electronic states in CuO2 planes of HTS. Recent studies
indicate, however, that oxygen p-orbital states strongly
renormalize the quasiparticle (QP) energy, both for anti-
ferromagnetic [5] and ferromagnetic [6] systems. Impor-
tance of oxygen orbitals may be recognized both from the
prominent role played in cuprates by the second neigh-
bor e�ective hopping t′, for instance in the stability of
stripe phases [7], and from numerical studies comparing
hole-doped and electron-doped systems [8].
These circumstances have led us to study the polaron

dynamics in the extended t�J model which includes the
oxygen states. In analogy to the well known CuO2 sys-
tem, initially the 2p oxygen states are completely �lled
with electrons, while the dx2−y2 states are half-�lled and
hosting localized S = 1/2 spins. The superexchange J
couples the spins on Cu sites [9] and stabilizes AF order
in the ground state. In the charge-transfer insulator there
are no itinerant charges in the p states. Therefore, to ac-
tivate any kinetic energy or interaction whatsoever, one
needs to inject charges into the p states, which is usually
achieved by means of hole doping La2−x(Sr,Ca)xCuO4,
or by substitutional transition metal impurities of di�er-
ent valence than Cu ions. Here we consider the case of a
single hole injected into the p-band.
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The complexity of hopping processes in a realistic
CuO3 chain in YBa2Cu3O7 [10] motivates a simpler one-
dimensional (1D) model of a CuO chain, see Fig. 1.
The advantage of this linear structure is that interoxygen
hopping is avoided and one may focus on the hole dynam-
ics of a carrier injected into one of the oxygen orbitals,
which follows from three-site processes, as shown below.
Such processes are of crucial importance in systems where
other hopping processes cannot occur, as in t2g systems
with Ising-like superexchange, where they cause weak
hole propagation [11] and stabilize bond stripes [12], and
in the quantum compass model [13].

Fig. 1. Schematic representation of the CuO model
with the conventions used throughout this paper.
The dashed line frame indicates the magnetic unit cell in
real space. Spins at Cu sites interact by the AF superex-
change J , and t stands for the spin-�ip p�d�p three-site
hopping.

2. Model

We formulate the simplest 1D t�J-like model with hole
dynamics in p orbitals. The model Hamiltonian,

H = H0 + V, (1)

consists of magnetic Heisenberg exchange (2a), enforcing
the AF ground state in the �Cu� d states and a three-site
p�d�p spin-�ip hopping (2b), obtained in second order
perturbation theory, acting as the interaction

H0 = J
∑
i

(Si · Si+2ξ − S2), (2a)

V = t
∑
i,σ

(p†i+ξ,σ̄diσ̄d
†
iσpi−ξ,σ + H.c.), (2b)

where ξ = a/4, a is the magnetic unit cell length, the
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constants J (superexchange) and t (hopping) are de�ned
as positive, and the summation extends over all the crys-
tal unit cells. The model follows in perturbation theory
from the respective itinerant model for the CuO chain.
Note that this simple Hamiltonian does not include any
free electron kinetic terms which are blocked due to large
Coulomb repulsion on dx2−y2 orbitals, and therefore the
free electrons are dispersionless. For a graphic illustra-
tion of the model and the various conventions pertaining
to it, consult Fig. 1.

To solve this toy model in the self-consistent Born ap-
proximation (SCBA) [14], one should �rst notice that the
pairs of fermion operators at Cu sites are equivalent to
spin-�ip processes,

diσ̄d
†
iσ = −Sσi , (3)

where the right hand side is the spin raising/lowering op-
erator, depending on the value of the spin index σ. SCBA
is typically employed using the linear spin wave (LSW)
theory, where one expands the spin operators in powers
of bosonic operators up to the second order using the
Holstein�Primako� representation. All the calculations
are done here in the magnetic unit cell, as the expansion
of (2b) around the AF ground state is irreducible to the
crystal unit cell.

After performing the standard steps of Fourier and
Bogoliubov transformations in the two sublattice frame-
work, one arrives at the following representation of the
Hamiltonian (2):

H0 =
∑
q

ωq(α
†
qαq + β†qβq), (4a)

V =
4t√
N

∑
kq

Γkq

[
p†k+q,↑pk↓(α

†
−q + βq) + H.c.

]
, (4b)

where ωq = J |sin(q/2)| is the magnon dispersion relation
in the 1D AF model (2a), N is the number of magnetic
unit cells in the system, and

Γkq = sin k+q
4 sin k

4 (uq + vq) (5)

is the electron�magnon vertex function. The opera-
tors {αq, βq} are the bosonic Bogoliubov operators and
{uq, vq} are the Bogoliubov transformation coe�cients.
More details on the above derivation can be found in the
literature concerning polarons in the t�J model, partic-
ularly in [14].

To obtain the SCBA Green function solution, one
needs to calculate the self-energy, which then serves as
the basis for the �rst order Green function

Σ(k, ω) = 〈0|pkσVG(ω)Vp†kσ|0〉, (6)

G(ω) = [ω + iη −H]−1, (7)

where |0〉 is the AF ground state and G(ω) is the re-
solvent, or the Green function operator. Note that, be-
cause of the spin degrees of freedom, Σ(k, ω) is in fact a
2×2 matrix, although only in a trivial, diagonal manner.
Inserting (4) into (6) one quickly arrives at the following
expression for the �rst order self-energy:

Σ (1)(k, ω) =
16t2

N

∑
q∈BZ

Γ 2
kq

ω − ωq
I2, (8)

where I2 is a 2×2 identity matrix to account for the afore-
mentioned spin degrees of freedom and the summation
extends over the �rst Brillouin zone (BZ). The above
equation can be solved analytically for the present
1D case, yielding

Σ(1)(k, ω) = 2
ω cos2 k

4

(
1√

1−ω2
ln
√

1−ω2−1
ω + ln 2ω−2

ω

)
+ cos k2

(
π
2 −

ω√
1−ω2

ln
√

1−ω2−1
ω

)
, (9)

as we will show elsewhere since the details of this deriva-
tion are beyond the scope of this article.
On the other hand, the self-energy (8) can also be

calculated numerically by simple lattice summation over
the BZ. After this is accomplished, Σ(1)(k, ω) can be used
to obtain the �rst order Green function via the equation

G(k, ω) = [(ω + iη)I2 − Σ(k, ω)]−1, (10)

which forms the basis of the self-consistent solution.
Equation (10) can then be inserted into (6) to obtain
the second order self-energy, and so on. However, usu-
ally the �rst order solution su�ces and further iterations
do not change the result signi�cantly. Indeed, this is also
the case here (not shown). Once the Green function is
calculated, one can extract the physical information in
the form of the spectral function

A(k, ω) = − 1

2π
=[TrG(k, ω)], (11)

which has a direct relation to photoelectron spectroscopy
experiments.

3. Results and discussion

Here we will present the numerical results (for self-
energy in the �rst order) obtained by the method de-
scribed above, and contrast them against the �rst order
analytic result, as mentioned earlier. As can be seen
from (8), the natural unit of energy for this problem is
the parameter J , therefore the results are plotted using
the energy ω/J .
Figure 2 shows the density map of the numerically ob-

tained spectral function A(k, ω) (in gray-scale) for the
problem under consideration with t = 1. Bear in mind
that in order to expose the low-amplitude features of
the spectrum, a nonlinear tanh-scale has been employed,
hence the very strong �broadening� of the bands.
On top of the numerical result we have plotted the an-

alytic solution (solid red line). This plot was obtained by
solving the equation

ω −<[Σ(1)(k, ω + iη)] = 0, (12)

which de�nes the location of the QP bands, sans the
broadening of the spectrum, i.e., the resulting curve cor-
responds to the QP maxima of (11). Next we will discuss
the di�erences between the two results.
First of all, one notices that both the numerical

and the analytic results display two solution branches:
(i) the lower branch with negative energy which is a
bound QP state (since the reference free particle disper-
sion is 0), and (ii) the upper branch, which is an excited
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Fig. 2. Numerically calculated spectral function
A(k, ω) (gray scale) and the analytic solution (solid
red lines) for t = 1 and η = 0.01. Note the nonlinear
tanh-scale.

QP state � in the present case, as the analytic result
seems to suggest, it exists only for k & π/4.
It is evident from Fig. 2 that in the case of the

lower branch the analytic result reproduces the numerical
solution quite well in the whole range of k values. On the
other hand, one can easily notice a sharp discrepancy be-
tween the two results in the case of the upper branch.
While the analytic result ends rather abruptly around
the energy ω/J = 1, the numerical solution extends well
below this point. Since the analytic solution does not
employ any approximations (beyond the physical ones),
we rather expect the numerical approach to be unsound.
It is our supposition that the problem lies within the

too naive approach to the numerical integration. More
speci�cally, the function being integrated in (8) is propor-
tional to (ω−|sin(q/2)|)−1, which has a singularity line in
the range ω ∈ [0, 1]. Integrating such a function numeri-
cally using simple quadrature rules, such as the rectangle
rule in this case, introduces noticeable systematic errors
into the solution. Such errors should be especially visi-
ble in the range in which the divergence occurs. As can
be seen in Fig. 2, this is indeed the case since the dis-
crepancy between the two solutions is most pronounced
exactly in the range where the singularities occur.

Further, from (8) one can see that in order to calcu-
late Σ (k, ω), one needs to integrate all the (k−q, ω−ωq)
elements, which means that the errors introduced in the
lower energies propagate to the solution at higher en-
ergies, which would explain the mismatch between the
solutions also for ω > J . Moreover, this implies that a
naive numerical solution of the problem presented herein
is reliable only until the energy ω ≈ 0.

4. Summary

In summary, we have presented the exact analytic re-
sult and an approximate numerical solution of the for-
mulated problem of the hole motion along the CuO chain
generated by spin-�ip processes. By comparing them we
have emphasized that an unsophisticated approach to nu-
merical methods can be detrimental to the reliability of
the SCBA results.
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