Electronic Structure and Thermodynamic Properties of RNi$_5$Sn (R = La, Ce, Pr, Nd) Compounds

A. JEZIERSKIa, J. KACZKOWSKIa AND A. SZYTUŁAb

aInstitute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
bM. Smoluchowski Institute of Physics, Jagiellonian University, W.Ś. Reymonta 4, 30-059 Kraków, Poland

The electronic structure, pressure and temperature dependence of thermodynamic properties of RNi$_5$Sn (R = La, Ce, Pr, Nd) compounds are calculated by ab initio full potential local orbital minimum-base (ver. 9 and ver. 14) method. These compounds crystallize in the hexagonal crystal structure (space group $P6_3/mmc$, No. 194). The band calculations were performed in the scalar-relativistic mode for the exchange correlation potentials in the form of the Perdew–Burke–Ernzerhof general gradient approximation. In this work we present the band structures of LaNi$_5$Sn, CeNi$_5$Sn, NdNi$_5$Sn and PrNi$_5$Sn compounds. The thermodynamic properties (bulk modulus, Debye temperature) are calculated in the Debye–Grüneisen model using the equation of states in the form of Birch–Murnaghan, Poirier–Taran tola and Vinet. Our results have shown that values of thermodynamic properties depend on the method of calculations.

DOI: 10.12693/APhysPolA.127.257

PACS: 71.15.Mb, 71.20.Eh, 64.30.Ef, 65.40.Ba

1. Introduction

The rare-earth RNi$_5$Sn compounds have been investigated in the recent years [1–8]. The crystal structure, magnetic and thermal properties were studied in [2–5]. These compounds were also investigated as a hydrogen storage materials. The hydrogen absorption and desorption properties of LaNi$_5$Sn and NdNi$_5$Sn were examined by Sato and Yartys [4, 5]. RNi$_5$Sn systems crystallize into hexagonal crystal structure (space group No. 194 ($P6_3/mmc$)). The crystal structure is presented in Fig. 1.

![Fig. 1. The crystal structure of RNi$_5$Sn.](image)

and the crystal structure parameters are listed in Table I.

The rare-earth R atoms (blue circles) are located in two different sublattices at 2c site (1/3, 2/3, 1/4) and 2a site (0, 0, 0). Nickel atoms (green circles) occupy four sublattices: 2b site (0, 0, 1/4), 2d site (1/3, 2/3, 3/4), 4f site (1/3, 2/3, z) and 12k site (x, y, z). The Sn atoms (red circles) are located at 4f site (1/3, 2/3, z). The values of x, y and z for Ni and Sn in 4f site and Ni in 12k site are listed in Table I.

| TABLE I
Crystal structure parameters for RNi$_5$Sn. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a [Å]</td>
<td>4.95809</td>
<td>4.8845</td>
<td>4.9287</td>
<td>4.9225</td>
</tr>
<tr>
<td>V [a.u.]</td>
<td>2865.2451</td>
<td>2747.2046</td>
<td>2810.1671</td>
<td>2803.1015</td>
</tr>
<tr>
<td>Ni$_3$ z</td>
<td>0.5437</td>
<td>0.5877</td>
<td>0.5424</td>
<td>0.5431</td>
</tr>
<tr>
<td>Ni$_4$ x</td>
<td>0.8333</td>
<td>0.8338</td>
<td>0.8347</td>
<td>0.8340</td>
</tr>
<tr>
<td>y</td>
<td>0.6666</td>
<td>0.6676</td>
<td>0.6694</td>
<td>0.6680</td>
</tr>
<tr>
<td>z</td>
<td>0.1457</td>
<td>0.1455</td>
<td>0.1435</td>
<td>0.1455</td>
</tr>
<tr>
<td>Sn z</td>
<td>0.0863</td>
<td>0.0421</td>
<td>0.0870</td>
<td>0.0867</td>
</tr>
</tbody>
</table>

2. Method of calculations

The electronic structures of RNi$_5$Sn compounds were calculated by the full-potential local-orbital minimum-base (FPLO ver. 9 and 14) [9–12] method for 192 k-points in the irreducible Brillouin zone. We have performed the self-consistent band calculations in local density approximation (LDA) and exchange correlation potential was assumed in the form of Perdew–Burke–Ernzerhof (PBE) [13, 14]. The total energy versus volume was obtained in the scalar relativistic mode and the thermal properties were calculated in the Debye–Grüneisen model using the GIBBS2 code [15–18]. The band structures were computed for the values of lattice parameters listed in Table I. We have applied the different methods...
of calculation of the equation of states (EOS) (Murnaghan (murn) [19], Birch–Murnaghan (bm4 — four order) [20, 21], Poirier–Tarantola (pt5 — five order) [22], Vinet (vinet) [23, 24]. In the Debye–Grüneisen model we
calculated the pressure and temperature dependence of the volume, bulk modulus \(B \), Debye temperature \(\theta_D \) and Grüneisen parameter \(\gamma \). In the Debye–Grüneisen model
the Debye temperature is determined by the Grüneisen parameter \(\gamma \), and hence [16],
\[
\gamma = -\frac{1}{6} + 0.5 \frac{d B_{\text{stat}}}{d p},
\]
\[
\theta_D(V) = \theta_D(V_0)(B_{\text{stat}}/B_0)^{\alpha} (V/V_0)^{\alpha},
\]
where \(V_0, B_0, B_{\text{stat}} \) are the static equilibrium volume, bulk modulus and static bulk modulus, respectively.

In the Dugdale–McDonald approximation \(a = -0.5 \) and \(b = 0.5 \). The results are presented in Table II.

TABLE II
The values of bulk modulus (\(B \)) and Debye temperature (\(\theta_D \)) and static equilibrium volume \(V_0 \) for \(\text{RNi}_5\text{Sn} \) (\(R = \text{La, Ce, Pr, Nd} \)) for the different models of EOS.

<table>
<thead>
<tr>
<th>(R)</th>
<th>(B) [GPa]</th>
<th>(\theta_D) [K]</th>
<th>(V_0) [a.u.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>bm4</td>
<td>38.505</td>
<td>277.72</td>
</tr>
<tr>
<td>Ce</td>
<td>bm4</td>
<td>37.411</td>
<td>270.44</td>
</tr>
<tr>
<td>Pr</td>
<td>bm4</td>
<td>40.748</td>
<td>280.17</td>
</tr>
<tr>
<td>Nd</td>
<td>bm4</td>
<td>40.748</td>
<td>280.17</td>
</tr>
</tbody>
</table>

3. Results and discussion

The total densities of states (DOS) is presented in Fig. 2. The broad peaks below the Fermi level give the contribution from nickel atoms. Above the Fermi level we observe the peaks due to rare-earth \(R \) atoms. In the case of \(R = \text{Pr and Nd} \) the Fermi level is located at large peak of 4f electrons. The values of densities of states at the Fermi level are 77.02, 53.77, 153.41, and 258.03 states/eV for \(R = \text{La, Ce, Pr and Nd} \), respectively. In Fig. 2 we plotted the dependence of the total energy versus volume. In Table II we listed the values of bulk modulus \(B \) (GPa), Debye temperature \(\theta_D \) (K) and equilibrium volume \(V_0 \) obtained from the different models of equation of states (bm4, pt5, vinet and murn). The values in Table II indicate that different approximation for the EOS give the different values of bulk modulus and Debye temperatures. In Fig. 4 we plotted the dependence of specific heat versus temperature for CeNi$_5$Sn. For all models this dependence is similar. Results presented in Fig. 4 are similar to the experimental results obtained for CeNi$_5$In by Rojas et al. (Fig. 2 in [6]).
4. Conclusions

We have calculated the band structure and thermodynamic properties of RNi$_5$Sn compounds using the FPLO and GIBBS2 methods. The equation of states was assumed in the different forms. Our results indicate that the values of bulk modulus, Debye temperature and static equilibrium volume depend on the method of calculations, although the differences are small. We have also shown that the Debye–Grüneisen model gives the dependence of the specific heat versus temperature for CeNi$_5$Sn similar to CeNi$_5$In [6].

Acknowledgments

This work (A.J. and J.K.) was supported by the project of the National Science Centre (NCN) through the Grant No. DEC-2011/01/B/ST3/02212.

References