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The t−J Model in a Strong Magnetic Field
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The normal-state energy spectrum of the two-dimensional t−J model in a homogeneous perpendicular mag-
netic �eld B is investigated using the Mori projection operator technique. The density of states at the Fermi level
as a function of 1/B reveals both high- and low-frequency oscillations. The high-frequency oscillations correspond
to large Fermi surfaces, while the low-frequency components are related to van Hove singularities in the Landau
subbands, which stem from their bending due to strong electron correlations. Frequencies of the low-frequency
components are of the same order of magnitude as those observed in underdoped cuprates. These components be-
come dominant if smoothing processes are involved. It is shown that despite increased distances between subbands
the pseudogap a�ects only slightly the frequency of density of states oscillations.
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1. Introduction

The decreased quantum oscillation frequencies, which
are observed in the mixed state of underdoped
cuprates [1], are usually interpreted with no regard for
strong electron correlations (see, e.g., [2, 3]). However, it
is known that these crystals are characterized by strong
electron correlations. In this work we consider the two-
dimensional (2D) t−J model of Cu�O planes in the
homogeneous magnetic �eld B, which is perpendicular
to the model plane. The used approach allows us to
take proper account of strong electron correlations and
to consider large enough clusters in moderate magnetic
�elds. We found that in the range of hole concentra-
tions 0.08 < x < 0.18 the DOS at the Fermi level os-
cillates with changing B. The oscillations have compo-
nents with frequencies di�ering by an order of magnitude.
The high-frequency components are connected with large
Fermi surfaces, while the low-frequency components are
related to van Hove singularities in the Landau subbands,
which traverse the Fermi level with changing B. These
van Hove singularities are linked with bending the Lan-
dau subbands due to strong correlations. Frequencies of
slow components are of the same order of magnitude as
quantum oscillation frequencies in underdoped cuprates.
Hence, the t−J model supplemented with a mechanism,
which smears out high-frequency oscillations, is able to
interpret observed low frequencies of quantum oscilla-
tions. To estimate the e�ect of the pseudogap we consid-
ered a weakly correlated system with gaps at the antin-
odal points in the spectrum. Despite the gaps increase
distances between the Landau subbands, they change
only slightly quantum oscillation frequencies.

2. Model

The Hamiltonian of the 2D t−J model in the perpen-
dicular magnetic �eld reads
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where 2D vectors l and l′ label sites of a square lattice,
σ = ±1 is the projection of the hole spin, a†lσ = |l0〉〈lσ|
and alσ = |lσ〉〈l0| are hole creation and annihilation op-
erators with the empty |l0〉 and singly occupied |lσ〉 site
states. The hole kinetic energy Hk contains the hop-
ping matrix element tll′ and the Peierls phase factor [4]
with the vector potential A(r). The exchange term in-
cludes the exchange constant Jll′ and the spin- 12 opera-
tors szl = 1

2

∑
σ σ|lσ〉〈lσ| and s±l = |l,±1〉〈l,∓1| of lo-

calized spins. The Zeeman term is omitted, since for the
considered �elds and exchange constants in cuprates it is
two orders of magnitude smaller than the exchange term.
In the following consideration we suppose that only

nearest neighbor hopping t and exchange J constants are
nonzero. In the Landau gauge A(l) = −Blyx, where ly
is the y component of the site vector l and x is the unit
vector along the x axis. Hence the exponential in the
kinetic term of the Hamiltonian can be written as e iκal,
κa = − e

~Baxy, a is the vector connecting neighboring
sites. We shall restrict our consideration to the �elds
satisfying the condition e

~Ba
2 = 2π n

′

n , a = |a|, n and
n′ < n are integers with no common factor. In this case
the kinetic term of the Hamiltonian de�nes its translation
properties � Hk is invariant with respect to translations
by the lattice period along the x axis and by n lattice
periods along the y axis. To retain this symmetry we ap-
ply the periodic Born�von Karman boundary conditions
to the sample with Nx sites along the x axis and nNy
sites along the y axis. The boundary conditions de�ne
the set of allowed wave vectors, and the momenta κa co-
incide with some of them. This fact simpli�es the Fourier
transformation over l in Hk,

Hk = t
∑
Kaσ

e iKaa†K−κa,σ
aKσ. (2)

It is convenient to split the Brillouin zone into n stripes
of the width 2π

na , which are oriented parallel to the x axis.
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If we select the lowest stripe with −πa < Ky ≤ −πa + 2π
na ,

and denote wave vectors in it as k, momenta in the en-
tire Brillouin zone can be described as k + jκ. Here
0 ≤ j ≤ n − 1 and κ = 2π

nay. In these notations the
kinetic energy acquires the form Hk =

∑
kσA

†
kσhkAkσ,

where the summation over k is performed over the se-
lected stripe, A†kσ =

(
a†kσ, a

†
k+κ,σ, . . . a

†
k+(n−1)κ,σ

)
and

the matrix hk has the following elements:

hkjj′ =


2 cos

(
kya+ 2jπ

n

)
, j = j′,

e− ikxa, j = j′ − n′,
e ikxa, j = j′ + n′,

0, in other cases.

(3)

In this equation the matrix indices j and j′ are deter-
mined modulo n.
The Hermitian matrix (3) can be diagonalized by

the unitary transformation Uk. Since the kinetic en-
ergy de�nes symmetry properties of the total Hamil-
tonian (1), the operators αkmσ =

∑n−1
j=0 U

∗
kjmak+jκ,σ,

0 ≤ m ≤ n − 1, form a basis for a representation of
the symmetry group of the Hamiltonian, and, there-
fore, they are an appropriate starting point for calcu-
lations. We shall calculate Green's function G(kmt̄) =

− iθ(t̄)〈{α†kmσ(t̄), αkmσ}〉, where the averaging over the
grand canonical ensemble and the operator time depen-
dence are determined by the Hamiltonian H = H −
µ
∑
l |l0〉〈l0| with the chemical potential µ. Since αkmσ

is constructed from Hubbard operators, in these calcula-
tions we use the Mori projection operator technique [5].
In this approach, the Fourier transform of G(kmt̄) is rep-
resented by the continued fraction

G(kmω) =
〈{αkmσ, α†kmσ}〉

ω − E0 − V0

ω − E1 − V1
. . .

. (4)

For every k and m we calculated terms E0, V0 and E1,
which approximate (4) by two poles. The multitude of
lower poles for di�erent k and m form Landau subbands
originated from the spin-polaron band. In the under-
doped case these subbands cross the Fermi level, and,
therefore, they are of primary interest for us. Equations
for E0, V0 and E1 are given in [6].

3. Results

The hole DOS, ρ(ω) = − 1
Nπ

∑
km ImG(kmω), as a

function of frequency and magnetic �eld reveals oscilla-
tions near the Fermi level for B 6= 0. An example of these
oscillations is shown in Fig. 1. Here and hereafter we set
t and a as units of energy and length, respectively. In the
calculations we set J/t = 0.2 and the temperature T = 0.
The oscillations are observed in the concentration range
0.08 < x < 0.18. Outside of this range the Fermi level
falls on strong maxima of the DOS, where the oscillations
are lost against the background.
In the used two-pole approximation, in the consid-

ered range of x the zero-�eld Fermi surfaces are large.
The main oscillation frequency of ρ(0) as a function of
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Fig. 1. The hole DOS in the case n = 63, n′ = 1 and
x = 0.11. The Fermi level is shown by the red dashed
line.

1
B = ea2

2π~
n
n′ conforms with such Fermi surfaces � for the

case x = 0.14 the frequency F ≈ 10 kT for a = 4 Å(an ap-
proximate distance between copper sites in Cu�O planes,
see Fig. 2a). However, along with these high-frequency
oscillations a modulation with a period which is larger
by an order of magnitude is also observed. To reveal
the respective low-frequency oscillations the data were
smoothed with the FFT �lter method, which allows one
to suppress high-frequency components. The result is
shown in Fig. 2b. The frequency of these oscillations is
of the order of 1 kT, which is comparable to the dom-
inant frequency of quantum oscillations in underdoped
YBa2Cu3O6+x [1]. Thus, supplemented with a mecha-
nism, which smears out high-frequency oscillations, the
t−J model is able to explain the low-frequency quantum
oscillations observed in cuprate perovskites.
The reason for the appearance of the low-frequency

modulation in Fig. 2a is the following. Let us plot the
Landau subband m in the stripe −π + 2π

n m < Ky ≤
−π + 2π

n (m + 1), −π < Kx ≤ π of the entire Brillouin
zone. As a result the hole dispersion looks like stairs
with steps ascending from smaller to larger energies when
Ky changes from −π to π. In the uncorrelated case en-
ergies in a step experience only weak oscillations when
kx varies from −π to π in the Landau gauge. The tra-
verse of the Fermi level through such subbands leads to
oscillations in the DOS with a nearly constant ampli-
tude. Strong correlations lead to a bend of the subbands
along the x direction. This bending, which is seen in
Fig. 3, leads to the appearance of van Hove singularities.
They supplement the DOS oscillations with the ampli-
tude modulation, since the singularities vary with a pe-
riod, which is larger than the distance between steps in
the stairs in Fig. 3 (notice that strong correlations mod-
ify the stairs with changing the Fermi level). Thus, the
low-frequency modulation and oscillations in Fig. 2 are
connected with traversing the Fermi level through the se-
quence of van Hove singularities in the Landau subbands.
We suppose that the inclusion of a next-nearest-neighbor
hopping does not qualitatively change these results.
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Fig. 2. (a) The DOS at the Fermi level as a function of
n
n′ = 2π~

ea2
1
B

for n′ = 3 and x = 0.14. Calculated values
are shown by symbols, connecting lines are a guide to
the eye. (b) The same data smoothed by the FFT �lter
method.
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Fig. 3. The dispersion of hole states near the Fermi
level for n = 47, n′ = 1 and x = 0.14. The Fermi level
is shown by the purple (dark) contour. Only subbands
near the Fermi level are shown.

The used two-pole approximation does not describe
the pseudogap and Fermi arcs, which can in�uence the
quantum oscillation frequency. To clarify their e�ect we
have compared ρ(0) in a weakly correlated system with
and without gaps in the energy spectrum near antinodal
points. The dispersion with the gaps is described in the
same manner as in [7]. The calculations are reduced to
the diagonalization of a Hamiltonian of the type of (2)
with large amount of hopping integrals, which are neces-
sary for the description of the gaps. The result is shown
in Fig. 4. The gaps increase the energy interval between
Landau subbands, as seen from the enlarged oscillation
amplitude. However, the frequency of oscillations in ρ(0)
changes only slightly.

60 80 100 120
0.0

0.4

0.8

1.2

1.6

 

 

(0
)

n/n'

Fig. 4. The DOS at the Fermi level in the absence of
gaps at the antinodal region (red solid circles and line)
and with gaps of the magnitude 0.2t and Fermi arcs
of the length 1/a (black open circles and dashed line).
n′ = 4.

4. Summary

In summary, we have considered the 2D t−J model
of Cu�O planes of cuprate perovskites in the perpendic-
ular homogeneous magnetic �eld. In the range of hole
concentrations 0.08 < x < 0.18 the DOS at the Fermi
level ρ(0) shows oscillations as a function of the inverse
�eld 1/B. The oscillations have high- and low-frequency
components. The latter components are connected with
the bending of the Landau subbands near the Fermi
level, which is a result of strong electron correlations.
The bending leads to the appearance of van Hove singu-
larities in the subbands, which produce the low-frequency
components in ρ(0) with changing B. Frequencies of
these components F ≈ 1 kT are of the same order of
magnitude as dominant quantum oscillation frequencies
observed in underdoped cuprate perovskites. Thus, be-
ing supplemented with a mechanism smearing out the
high-frequency components, the model is able to account
for these experiments. We argue that the pseudogap in-
�uence only slightly the quantum oscillation frequency.
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