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Motivated by the recent success in describing the spin and orbital spectrum of a spin-orbital chain using a
large-N mean-�eld approximation, we apply the same formalism to the case of a spin chain in the external magnetic
�eld. It occurs that in this case, which corresponds to N = 2 in the approximation, the large-N mean-�eld theory
cannot qualitatively reproduce the spin excitation spectra at high magnetic �elds, which polarize more than 50%
of the spins in the magnetic ground state. This, rather counterintuitively, shows that the physics of a spin chain
can under some circumstances be regarded as more complex than the physics of a spin-orbital chain.
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1. Introduction

Recently a number of studies discussed the collective
excitations in a spin-orbital chain [1�5]. Most of them
concentrated around a novel phenomenon called spin-
orbital separation which is present when a very strong ex-
ternal crystal �eld fully polarizes the orbital sector of the
ground state [1�3]. Although this phenomenon seemed
to be completely at odds with the physics present in an
SU(4)-symmetric spin-orbital chain (i.e. without exter-
nal crystal �eld) [6], a very recent paper discusses how to
unify these two seemingly di�erent limits [5]. It occurs
that a large-N mean-�eld theory [7, 8] surprisingly well
describes the spin and orbital spectra for any value of
the crystal �eld and thus explains the striking evolution
of the spin and orbital spectra with increasing external
crystal �eld [5].
As a result of this recent success of the large-N mean-

�eld theory the following question arises: could such a
theory be equally successful in explaining the behavior of
collective spin excitations in a spin chain that is subject
to external magnetic �eld? While this might look like as
an old problem, which should have been solved long time
ago, to the best of our knowledge, there exists no precise
answer to this question in the literature.

2. De�nition of the problem

Let us now be more speci�c. First, we de�ne the fol-
lowing Hamiltonian which describes the problem of a spin
chain subject to the external magnetic �eld Hz:

H = J
∑
〈ij〉

(
SiSj +

1

4

)
+Hz

∑
i

Szi . (1)

Here J is the energy scale of the superexchange inter-
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actions between SU(2)-invariant spin S = 1/2 operators
(S), 〈ij〉 represents a nearest-neighbor spin pair, and Hz

is the magnetic �eld strength.
Second, we de�ne the transverse dynamical spin struc-

ture factor which is a good proxy for probing the nature
of the collective spin excitations:

S(q, ω) =
1

π
lim
η→0
=〈ψ|Sxq

1

ω + Eψ −H− iη
Sxq |ψ〉. (2)

Here |ψ〉 is the ground state of H with energy Eψ,

Sxq ≡
∑
j e iqjSxj /

√
L is the Fourier transform of the local

spin operator, and L is the number of lattice sites.
In what follows we calculate the dynamical spin struc-

ture factor in Eq. (2) using two distinct methods:
(i) the numerically exact combined cluster perturbation
theory (CPT) and exact diagonalization (ED) method,
and (ii) the approximate analytical large-N mean-�eld
theory. We compare our analytical results with the nu-
merical calculations, which have already been extensively
discussed in the literature [9�13].

3. Numerical results

The numerical method employed in the current study,
CPT+ED, is a quantum cluster approach [14, 15] which
complements the �nite-size ED simulations and there-
fore allows for a better visualization of the �ne spectral
details. The spin dynamical structure factor, Eq. (2),
calculated with this method is shown in Fig. 1 for three
di�erent values of the external magnetic �eld Hz. When
Hz = 0, the ground state has short range antiferromag-
netic order and the spectrum is well-known [9�11, 13]:
it is mostly spanned by a two-spinon continuum and has
zero modes at q = 0 and q = π, cf. Fig. 1a. For a �nite
value of Hz the ferromagnetic domains start to appear
in the ground state and the positions of the zero modes
shift. For instance when Hz ∼ 1.58J half of the spins in
the chain are polarized and the spectrum has zero modes

(201)

http://dx.doi.org/10.12693/APhysPolA.127.201
mailto:wohlfeld@stanford.edu


202 K. Wohlfeld et al.

Fig. 1. Numerical results. Spin dynamical structure
factors computed by CPT+ED for a spin chain under
a magnetic �eld Hz: (a) Hz = 0 with no spin polar-
ization (

∑
i S

z
i /L = 0); (b) Hz ∼ 0.79Hcr

z with half
polarized spins (

∑
i S

z
i /L = 1/4); (c) Hz = Hcr

z = 2.0J
with fully polarized spins (

∑
i S

z
i /L = 1/2). The ED

spectra (broadened with a 0.25J Lorentzian) are com-
puted on an L = 24 site lattice. For Hz < Hcr

z [parts (a)
and (b)], the spin spectra show fractionalized excitations
with broad energy continua. When Hz ≥ Hcr

z , the (fer-
romagnetic) ground state is fully spin-polarized; the ex-
citations are no longer fractional, and the spectrum ex-
hibits only a sharp, single-magnon mode [part (c)].

at q = π/2 and q = π, cf. Fig. 1b. Nevertheless, the
spectrum is still spanned by a continuum of fractional
excitations. This, however, stays in contrast with the
fully polarized (i.e. ferromagnetic) ground state which
occurs at Hz = 2J ≡ Hcr

z . The spin dynamical struc-
ture factor is then no longer spanned by a two-spinon
continuum, cf. Fig. 1c, and instead a single (magnon)
branch arises. Further increasing Hz above H

cr
z leads to

a gapped magnon branch.

4. Large-N mean-�eld theory

Following similar steps as described in detail in
Refs. [5, 16] we �rst map the spin model described by
Eq. (1) onto a fermionic model [16]. By performing
a large-N mean-�eld decoupling and solving the self-
consistent mean-�eld equations, we obtain the following
Hamiltonian:

HMF =
∑
k

(
εk↑f

†
k↑fk↑ + εk↓f

†
k↓fk↓

)
, (3)

where the fermionic bands are εk↑/↓ =
−2J cos(δk) cos k/π ∓ J sin(2δk)/π (cf. Fig. 2) with
δk = arcsin (Hzπ/(2J)) /2, subject to the constraint∑
σ f

†
iσfiσ = 1.

We note, �rst, that in this approach Hz ≤ 2J/π, which
means δk ≤ π/4 and a maximum Fermi momentum δk +
kF = 3π/4 under an applied magnetic �eld (since kF =
π/2 for the fermionic mean-�eld theory at Hz = 0 [16]).
Second, above Hz > 2J/π the self-consistent mean-�eld
solution e�ectively breaks down.
Next, since the maximum available Fermi momentum,

3π/4, corresponds to just half of the spins being polarized

Fig. 2. Large-N mean-�eld theory. Evolution of the
mean-�eld fermionic bands as a function of the mag-
netic �eld at Hz = 0 (top part) and Hz = 2J/π (bot-
tom part). The collective spin excitations in the mean-
�eld picture correspond to �particle�hole� excitations of
the fermions across the Fermi surface (denoted by the
dotted horizontal lines). The energies of the up-spin
and down-spin fermionic bands are separated by Hz,
and the allowed �particle�hole� excitations change with
the magnetic �eld accordingly. The thick arrows point
to the allowed zero-energy spin excitations.

Fig. 3. Analytical results. Compact support of the
spin spectra for a spin chain in a magnetic �eld Hz

computed by the large-N mean-�eld theory [(a)�(b)]:
(a) When Hz = 0, the ground state exhibits (short-
range) antiferromagnetic correlations without any spin
polarization. (b) When Hz = 2J/π in the mean-�eld
calculation, i.e. when 50% of the spins are polarized in
the ground state; the lighter (darker) part in the spin
spectrum refers to spin-�ip excitations created by spin
raising (lowering) operators. (c) The exact spin wave
dispersion ωq = J(1 + cos q) calculated by linear spin
wave theory at Hz = Hcr

z ; the large-N mean-�eld the-
ory is not valid in this regime.
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in the ground state, this is the maximum value of polar-
ization available in this approach. As this means that we
can never fully �ll one of the spin bands, i.e. reach the
δk + kF = π momentum, the fermionic mean-�eld theory
is not able to describe the fully spin-polarized ground
state.
In this fermionic mean-�eld picture, the compact sup-

port of the spin spectrum can be calculated by

S̄(q, ω) =
∑

k∈FS,q+k/∈FS

δ(ω − εq+k,↑ + εk↓)

+
∑

k∈FS,q+k/∈FS

δ(ω − εq+k,↓ + εk↑),

cf. Fig. 2. The evolution of the spin spectrum as a func-
tion of Hz is shown in Fig. 3a,b. The shift of the zero-
energy modes with the magnetic �eld in the spin spec-
trum follows from the splitting of the fermionic bands in
the magnetic �eld, cf. Fig. 2.

5. Conclusions

Let us �rst emphasize that the fermionic large-N
mean-�eld approximation is valid only when Hz ≤ 2J/π
(i.e. when the ground state is less than half-polarized).
In this case there exists a qualitative agreement be-
tween the analytically calculated compact support and
the numerically obtained spin spectrum. Nevertheless,
the quantitative di�erences between the mean-�eld and
the CPT+ED results are substantial (the bandwidth of
the spin excitations is ca. 2.5 smaller in the analytical
approach), making the fermionic large-N mean-�eld de-
scription less appropriate compared to that in the spin-
orbital model [5].
A di�erent situation exists when Hz > 2J/π (i.e. when

the ground state is more than half-polarized). Here the
mean-�eld approximation breaks down. This means that
long before the critical �eld is reached (which fully po-
larizes the ground state) there exists no simple analytical
approach that can be used to calculate the spin spectrum
(for more complex approaches, cf. Ref. [9, 17]). It is then
only when Hz ≥ Hcr

z that another simple analytical ap-
proach becomes valid � the well-known linear spin-wave
approximation which works well for spin ground states
with long range magnetic order [11, 18]. The analyti-
cally evaluated spin spectrum, S(q, ω) = δ(ω − ωq) with
ωq = J(1 + cos q) being the magnon dispersion when
Hz = Hcr

z (cf. Fig. 3c), is then equal to the numerically
calculated spin dynamical structure factor (cf. Fig. 1c).
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