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A microscopic, or Hamiltonian-based, theory is outlined for studying the spin-wave instability thresholds of
the parametric processes occurring in ferromagnetic nanostructures under conditions of pumping with a microwave
�eld. Most previous work has concentrated on spheres or �lms with dimensions of order several µm or more, with
the theoretical interpretation being made in terms of macroscopic (or continuum) methods. At smaller length scales,
as in ultrathin �lms and nanowires with thickness or lateral dimensions less than about 100 nm, the discreteness of
the quantized spin waves and their spatial distributions become modi�ed, making it more appropriate to employ a
microscopic approach to the nonlinear dynamics with a lattice of e�ective spins interacting through the magnetic
dipole�dipole and exchange interactions. E�ects of microwave pumping (in either the parallel or perpendicular
con�guration) are incorporated in calculations for the instability thresholds of the quantized spin-wave bands in
di�erent nanostructures and materials.
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1. Introduction

The magnetization dynamics of ordered magnetic
nanostructures (such as �lms, wires, rings, etc., and their
arrays) have generated much attention in recent years as
a result of advances in materials growth techniques and
the study of surfaces and interfaces. In particular, there
has been renewed interest in spin-wave (SW) parametric
processes in such structures (see, e.g., [1�3]).
Following the pioneering work on SW instabilities

in ferromagnetic systems under microwave pumping by
Suhl [4], Schlomann [5], and others, there has been an
extensive amount of experimental and theoretical e�ort
devoted to this �eld (for reviews see, e.g., [6�11]). Un-
til recently, most of these studies applied to either un-
bounded samples or to spheres and �lms with dimen-
sions of typically several mm or µm for which macro-
scopic (or continuum) descriptions are generally applica-
ble. In �nite samples boundary e�ects need to be taken
into account, resulting in spatial quantization of the SW
modes. In turn, there is a modi�cation of the SW in-
stability thresholds and additional selection rules under
microwave pumping (see [12�15]).
The focus of our present work is a theoretical study of

SW instability processes in structures where at least one
of the sample dimensions is of the order 100 nm or less.
The quantization of the SWs is much more pronounced
and surface e�ects become more dominant. Moreover,
it becomes more appropriate to use a microscopic (or
Hamiltonian-based) method with a discrete lattice of ef-
fective spins interacting through exchange and dipole�
dipole terms, rather than a macroscopic continuum ap-
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proach. Very recently we have utilized such an approach
to consider the special case of parallel pumping in ultra-
thin magnetic �lms [16]. In the present work we are mo-
tivated to extend the calculations to magnetic nanowires
(which include stripes and ribbons) to compare these low-
dimensional systems and also to consider the case of per-
pendicular pumping. The theoretical techniques are gen-
eralizations, in order to include the microwave pumping
�elds, of earlier work on �lms [17, 18], wires [19�21] and
magnonic crystals [22].
The calculations for the SW instability thresholds are

outlined in Sect. 2, where we highlight e�ects of the di�er-
ent dimensionality (in terms of wave vectors and trans-
lational symmetry) for the �lms and wire cases. Then
numerical examples are given in Sect. 3 for di�erent ma-
terials to illustrate the two geometries and the crucial
role of dipole-dipole to exchange ratio for interactions.
Finally the conclusions are given in Sect. 4.

2. Theoretical method

The two ferromagnetic nanostructures considered here
are ultrathin �lms and nanowires (or stripes) with a rect-
angular cross-section. They have, respectively, two and
one directions of translational symmetry and are depicted
in Fig. 1. The ultrathin �lm with (010) surfaces is mod-
elled as having N atomic layers of spins arranged, for
simplicity, on a simple cubic (sc) lattice structure with
lattice constant a, while the nanowire (stripe) is modelled
as having a rectangular cross section of Nx × Ny = N
atomic spins (in the xy plane). Typically, for both struc-
tures the preferred direction of spin ordering corresponds
to the static magnetization along the z direction, unless
changed by the applied static and microwave �elds.
The total spin Hamiltonian for each structure can be

written in a common form as

(192)
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where the indices i and j refer to the spin sites within
any atomic layer (in the �lm case) or to those sites along
the z-directed lines of spins (in the nanowire case), while
n and m (= 1, 2, . . . , N) label the layers of the �lm in
the y direction or the spin sites in any cross-section of
the nanowire. The �rst term in the Hamiltonian repre-
sents the short-range exchange interactions Jin,jm acting
between the spins Sin and Sjm at a distance apart speci-
�ed by rin,jm. The second term describes the long-range
dipole�dipole interactions between spins with the com-
ponents of the coupling tensor given by

Dα,β
in,jm =

|rin,jm|2δα,β − 3rαin,jmrβin,jm
|rin,jm|5

, (2)

where α, β = x, y, z, and with g and µB denoting the
Landé g-factor and Bohr magneton, respectively. The
next term is the Zeeman energy due to a static applied
magnetic �eld H0, which usually we take to be along the
z direction. Finally, Hp is the interaction Hamiltonian
corresponding to the microwave pumping magnetic �eld
h0 written as:

Hp = −gµB exp(− iωpt)
∑
in

h0 · Sin. (3)

Here we have taken a time dependence corresponding to
a Fourier component with angular frequency ωp.

Fig. 1. Assumed nanostructure geometries and choices
of coordinate axes: (a) an ultrathin �lm with transla-
tional symmetry in the xz plane and �nite thickness
in the y direction (illustrated for N = 3 layers); (b) a
rectangular nanowire with translational symmetry along
the z direction and �nite in the xy plane (illustrated for
N = 3 × 2 = 6 lines of spins).

In order to study SWs and their instability properties
at low temperatures T � Tc, (where Tc is the Curie
temperature) we extend the procedures in our recent
work [16�21]. First the Holstein�Primako� representa-
tion [3] is used to transform the Hamiltonian in the ab-
sence of pumping from components of the spin operators

Sin to boson creation and annihilation operators α†in and
αin. If the static applied �eld is along the de�ned z direc-
tion for either the �lm or the wire, then z is also along the
preferred direction of static magnetization, so this trans-
formation is straightforward. In the case of the wire,
however, we will also include calculations for the case of
a transverse applied �eld, along x in Fig. 1b, where the
individual spins are canted away from the z axis and the
static magnetization is spatially nonuniform. Then the
procedure involves determining the equilibrium orienta-
tions of the spins for any value of the transverse �eld and
applying the Holstein�Primako� transformation relative
to these local axes for each spin (see [21]). In both of the
above cases we expand the Hamiltonian of the system for
T � Tc, as H = H(2) + H(3) + H(4) + . . . , apart from
a constant, with H(m) denoting the term with a product
of m boson operators.

A canonical (generalized Bogoliubov) transformation
can next be introduced, following [18, 21], to diagonalize
H(2) giving

H(2) =
∑
q,l

ωl(q)α†q,lαq,l, (4)

where ωl(q) is the frequency of the non-interacting SW
branch l (l = 1, 2, . . . , N) at wave vector q. Here q is a
two-dimensional (2D) wave vector in the case of a �lm,
with q = (qx, qz) and a 1D wave vector for a nanowire,
with q = (qz). In the case of parallel pumping, where
the microwave �eld h0 in Eq. (3) is parallel to the mag-
netization direction, the higher-order H(3) and H(4) ex-
pansion terms, which describe three-magnon and four-
magnon processes respectively, are unimportant. This is
not the case, however, for perpendicular pumping.

For simplicity, we start with parallel pumping. The
additional Hamiltonian term that describes the SW in-
stability in this case is

H(2)
p = −gµB exp(− iωpt)

∑
q,l,l′

Pl,l′(q)α†q,lα
†
−q,l′

+H.c. (5)

The amplitude factor Pl,l′(q) is quoted in [16] for the
�lm case, and for the present calculations we have de-
rived analogous expressions for the wire geometry that
apply when the static external �eld of magnitude H0 is
along either the z axis (longitudinal �eld) or the x axis
(transverse �eld).

The next step is to derive the rate equations for the

boson operators α†q,l and α−q,l by forming their commu-

tator with the e�ective Hamiltonian Heff = H(2) + H
(2)
p

for parallel pumping. This eventually gives rise to a set
of N coupled equations for the boson operators αq,l, and
another N equations for their conjugates, in the form
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d

dt
αq,l = −{ iωl(q) + ηl(q)}αq,l

− ih0 exp(− iωpt)
∑
l′

Pl,l′(q)α†−q,l′ . (6)

Here we have introduced the role of energy dissipation
phenomenologically via the damping constant ηl(q) for
the SW branch l, following the approach commonly used
in macroscopic theories (see, e.g., [9�13]) as well as in [16]
for a microscopic approach.
A numerical procedure to solve for the instability

thresholds arising from the above type of coupled equa-
tions is outlined in [13, 14, 16]. In general, when the
driving �eld h0 is larger than a threshold value hc, the
rate at which energy is pumped into the SW system ex-
ceeds that lost to the system through relaxation mecha-
nisms. The SW population increases exponentially above
this threshold until it reaches a saturation depending on
the nonlinear interactions. The set of coupled rate equa-
tions can be recast into a matrix form as an eigenvalue
problem, and the onset of instability is associated with
a change of sign of one of the eigenvalues. Typically,
the calculations are carried out numerically as described
later, but in a few special cases there are analytic expres-
sions. For example, in the special case of a single layer
�lm (N = 1), where there is only one SW branch (l = 1),
we �nd analytically that

hc =

√
(η1(q))2 + (∆ω1(q))2

|P1,1(q)|
, (7)

where ∆ω1(q) = ω1(q)− 1
2
ωp. For a nanowire in the sim-

plest non-trivial case, which corresponds to 2×1 (N = 2),
we �nd that hc = min(hc1, hc2) for the two SW branches,
where

hci =

√
η1(q)η2(q) + (∆ωi(q))2

|Pi,i(q)|
, (i = 1, 2). (8)

In order to study SW instability thresholds under con-
dition of perpendicular pumping an analogous approach
can be followed. For simplicity, we shall restrict the dis-
cussion to the �lm case, where perpendicular pumping
means that the microwave �eld h0 can be considered in
terms of components along the in-plane x direction or
the out-of-plane y direction. We conclude later that the
corresponding threshold �elds, denoted as hcx and hcy,
are quite di�erent. The e�ective Hamiltonian that leads
to the instabilities of the system for the �rst-order Suhl
process [4, 5] isHeff = H(2)+H(3)+H⊥p , where the three-
magnon term now plays an important role, along with the
perpendicular microwave pumping term found explicitly
from Eq. (3) and use of the Holstein�Primako� trans-
formation. The relevant part of H(3) that drives the SW

instability consists of terms of the form α†q,lα
†
−q,l′α0,l′′ for

the operators, where the uniform (or zero wave-vector)
mode can be replaced by a resonance term, as in [10, 11].
The second-order Suhl process, which depends on the
four-magnon term H(4), will not be considered here.
Then, following the approach as described earlier, the

set of N coupled rate equations can be formed. We even-
tually �nd results that are formally similar to Eq. (6),

but with Pl,l′(q) replaced by di�erent expressions. Nu-
merical examples will be given in Sect. 3; details of the
calculations will be presented elsewhere.

3. Numerical applications

In this section the previous theory will be applied to
study the SW instabilities for some ultrathin �lms and
nanowires. Examples for microwave pumping in either
the parallel or perpendicular con�guration will be given
for the dispersion relations of the quantized SW modes
and their instability thresholds in di�erent structures and
magnetic materials. Typically we consider �lms with val-
ues of N up to about 50, and wires with di�erent cross-
sectional aspect ratios Nx/Ny < 1 and N = NxNy up to
about 15. The SWs in �lms, which are characterized by a
2D wave vector, depend on the magnitude q = |q| and in-
plane propagation angle ϕ = tan−1(qx/qz). Hence they
occur in bands that may become overlapping at large N .
On the other hand, the SWs in wires depend only on a
1D wave vector so the spectrum consists of distinct lines
(branches) that sometimes may hybridize.
Numerical calculations will be presented using bulk pa-

rameters appropriate to four magnetic materials, which
are representative of widely di�ering dipolar-to-exchange
interaction ratios. Speci�cally, the materials are YIG (as
a strong-exchange case), EuO and EuS (as intermedi-
ate cases), and GdCl3 (as a strongly-dipolar case). For
YIG we have approximately Hex = 6SJ/gµB = 200 T
for the exchange �eld, Ms = gµBS/a

3 = 0.176/4π T
for the saturation magnetization, S = 5/2, and gµB =
28.0 GHz/T [16]. Likewise, for EuO we take Hex = 38 T,
4πMs = 2.4 T, S = 7/2, and gµB = 28.0 GHz/T; for
EuS we take Hex = 9.4 T, 4πMs = 1.5 T, S = 7/2,
and gµB = 28.0 GHz/T; and �nally for GdCl3 we as-
sume Hex = 0.54 T, 4πMs = 0.82 T, S = 7/2, and
gµB = 28.0 GHz/T. Another parameter required for
the calculations is the damping ηl(q), which in princi-
ple may depend on q and on the branch label l. Here
we will follow the simpli�cation commonly adopted in
the cited macroscopic calculations of adopting a constant
value. YIG has a very small damping, for which we may
assume a typical experimental value of 0.001 GHz (or
∆H ≈ 0.3 Oe for the equivalent resonance half-linewidth
given by η/gµB). For damping of the other materials we
consider several values between 0.01 and 0.1 GHz. More
discussion of parameter values is given in [16], and refer-
ences therein.
We start with the applications to �lms. In Fig. 2 the

lowest SW frequencies are plotted as a function of qa for
several values of the propagation angle ϕ for (a) a EuO
�lm with N = 12 and (b) a YIG �lm with N = 50. For
any nonzero qa there is a range of frequencies, leading to
SW bands (with ϕ = 0 and π/2 de�ning the lower and up-
per boundaries, respectively). The widths of these bands
become zero in the limit of qa → 0, leading to a series
of discrete frequencies, of which the lowest lies very close
to the angular frequency gµB

√
H0(H0 + 4πMs) of the
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Fig. 2. SW frequencies for the lowest three bands
(shaded areas) in ultrathin �lms plotted versus dimen-
sionless in-plane wave vector qa for (a) EuO with N =
12 and (b) YIG with N = 50, with H0 = 0.1 T in both
cases. The bottom and top of each band corresponds to
propagation angle ϕ = 0 and π/2, respectively. Also in
case (a) the line for ϕ = π/4 is included (dashed line)
and the horizontal line (labeled P) indicates one half of
the pumping frequency to be considered.

Damon�Eshbach (DE) mode at q = 0 in magnetostatic
theory [24]. This expression yields 14.0 and 4.65 GHz
using the quoted Ms and H0 for Fig. 2a and b, respec-
tively, which are seen to be close to the numerical calcu-
lations. The separation of the bands increases with Hex

and decreases with N . This means relatively narrow,
separated bands for YIG and wider bands for EuO that
are beginning to overlap for N = 12 in Fig. 2(a). The
top of the DE mode in magnetostatic theory corresponds
to gµB(H0 + 2πMs). This yields 36.4 GHz for EuO in
Fig. 2a, which is roughly where the �rst band levels o�
at small qa ≈ 0.1 before increasing further due to ex-
change e�ects at larger wave vectors. The corresponding
value is 5.3 GHz for the YIG �lm in Fig. 2b. Another
notable feature is the initial dip of the lower (ϕ = 0)
boundary of the �rst band, which is expected by analogy
with properties of the magnetostatic backward volume
modes [24]. Eventually at larger qa this boundary bends
upwards due to e�ects of exchange interactions, which
are stronger in YIG.
In Figs. 3 and 4 we present calculations for the thresh-

old �eld hc (relative to ∆H) plotted versus applied �eld
H0 for EuO �lms when the pumping-�eld frequency
ωp/2π = 16 GHz. These results are the analogs of the
so-called �butter�y curves� in macroscopic samples. The
parallel pumping case is considered in Fig. 3 where we
compare our results for three values of N = 3, 12 and 36.
The three curves have a similar form with a mainly �at
region below a cusp �eld, whereas above this �eld (oc-
curring at about 0.07, 0.08, and 0.16 T, respectively, for
the three values of N) the threshold hc increases sharply.
This behaviour can be understood on the basis that the
decay instability is generally dominated by the formation
of two degenerate SWs with ωi(q) ≈ ωp/2 (see, e.g. [1�
11] and Eq. (7) for a special case). The horizontal line

Fig. 3. SW instability thresholds hc expressed as a ra-
tio of the half-linewidth ∆H and plotted versus applied
�eld H0 for EuO �lms with N = 3, 12 and 36. Parallel
pumping at frequency ωp/2π = 16 GHz is considered
with η = 0.1 GHz.

Fig. 4. SW instability thresholds hc expressed as a ra-
tio of the half-linewidth ∆H and plotted versus applied
�eld H0 for a EuO �lm with N = 10 and η = 0.01 GHz.
Perpendicular pumping at ωp/2π = 16 GHz is consid-
ered for the microwave �eld along x (dashed line) and
along y (solid line).

P drawn at 8 GHz in the dispersion curves of Fig. 2a
when H0 = 0.1 T lies below the bottom of the �rst SW
band, so the decay threshold is high, whereas at smaller
H0 this line would intersect one or more of the SW bands
and the decay would be more likely. The results shown
in Fig. 4 apply for the �rst-order Suhl e�ect in the case
of perpendicular pumping. The two curves, which have
a similar overall form to those in Fig. 3, show the insta-
bility threshold curves for the cases where the pumping
�eld is along x (parallel to the �lm surfaces) or along y
(perpendicular to the �lm surfaces). We �nd that the hc

values are larger in the latter case, and this is related to
the ellipticity of the spin precession.

Next we consider examples for nanowires. In Fig. 5 the
frequencies of the lowest SW branches of a 4×3 wire in a
longitudinal applied �eld are plotted as a function of qa
using parameters for GdCl3, which is a strongly-dipolar
material as mentioned. Since we now have a 1D wave
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Fig. 5. SW frequencies plotted versus dimensionless
longitudinal wave vector qa for the lowest �ve branches
of a 4 × 3 nanowire (N = 12) taking parameters as for
GdCl3 and a longitudinal applied �eldH0 = 0.117 T and
η = 0.1 GHz. The horizontal line (labeled P) indicates
one half of the pumping frequency to be considered.

Fig. 6. SW instability threshold hc expressed as a ra-
tio of the half-linewidth ∆H and plotted versus applied
�eld H0 for a 4 × 3 (N = 12) GdCl3 nanowire. Par-
allel pumping at ωp/2π = 28 GHz is considered with
η = 0.1 GHz.

vector (by contrast with the �lm case), the spectrum
consists of a series of curves for the di�erent branches
instead of bands. Some branches show a minimum at
nonzero wave-vector, which is a result of the interplay
between the dipolar and exchange interactions (with fea-
tures analogous to the magnetostatic backward volume
modes characteristic of the wave vector being parallel to
the net magnetization). In addition, we see some e�ects
of hybridization (with mode repulsion) between branches
labelled 1 and 2 for small qa. The butter�y curve for the
same nanowire with parallel pumping is given in Fig. 6,
which has several features labelled as A (atH0 = 0.11 T),
B (at H0 = 0.117 T) and C (at H0 = 0.23 T). They can
all be associated with H0 values at which the line P in
Fig. 5, drawn at one-half of the pumping frequency, coin-
cides with a speci�c feature of the SW dispersion. Point
A corresponds to the �eld when the one-half frequency
is coincident with the qa ≈ 0 part of branch 1, point B

Fig. 7. SW frequencies for the lowest three branches of
a 12× 1 EuS nanowire (N = 12) in a transverse applied
�eld with η = 0.03 GHz: (a) plotted versus H0 below
and above the transition at 0.20 T for a �xed qa ≈ 0;
(b) plotted versus qa for a �xed �eld H0 = 0.21 T which
is above the transition. The horizontal line (labeled P)
in (b) indicates one half of the pumping frequency to be
considered.

Fig. 8. SW instability threshold hc expressed as a ra-
tio of the half-linewidth ∆H and plotted versus the
transverse applied �eld H0 (above the transition �eld
in Fig. 7) for a 12 × 1 (N = 12) EuS nanowire with
η = 0.03 GHz. Parallel pumping at ωp/2π = 15 GHz is
considered.

corresponds to the �eld value in Fig. 5 where the line is
just touching the minimum in branch 2, and point C is
analogous to the main cusp point in previous examples
(i.e., the �eld value where the line is just touching the
minimum in branch 1).
In Figs. 7 and 8 we examine the behaviour in a

nanowire when the static �eld H0 is applied transversely
(in the x direction), causing the spins to cant in that di-
rection. We employ parameters for a 12×1 EuS wire (or
ribbon-like structure). Results for the lowest SW fre-
quencies plotted versus the transverse �eld at a �xed
qa ≈ 0 are given in Fig. 7a, where the main dip at
H0 ≈ 0.20 T provides us with the critical �eld value
above which the net spin orientation or sample magneti-
zation is along x. Below the critical �eld the competition
between the applied �eld and the dipolar �eld leads to
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SW curves that decrease gradually with increasing H0.
Above the critical �eld the spins are reoriented perpen-
dicular to the wire axes and the frequencies increase with
increasing H0. Next, in Fig. 7b we show the lowest SW
frequencies plotted versus qa at a �xed H0 above the crit-
ical value. In this case with the longitudinal wave vector
perpendicular to the net magnetization direction, the SW
frequencies all increase monotonically with increasing qa,
unlike the behaviour in a longitudinal �eld (see Fig. 5).
The lowest two branches are well separated at small qa,
but become approximately degenerate at larger qa when
exchange e�ects start to play a dominant role.
The corresponding butter�y curve for the transversely-

magnetized EuS wire in the case of parallel pumping is
given in Fig. 8. We note two features labelled X and Y
at H0 = 0.21 T and H0 = 0.251 T respectively, which
correspond to the one-half pumping frequency line coin-
ciding with the minimum frequency for SW branch 2 (as
in Fig. 7b) and then for SW branch 1.

4. Conclusions

We have presented a microscopic dipole-exchange the-
ory for the SW instability thresholds of ferromagnetic
nanostructures, speci�cally for �lms magnetized in-plane,
longitudinally magnetized wires (or stripes), and trans-
versely magnetized wires. Both the parallel and perpen-
dicular (�rst-order Suhl) con�gurations for the pumping
�eld were considered and the results were interpreted in
terms of the SW modes, which are quantized di�erently
in the two structures due to their di�ering symmetries.
The results depend sensitively on the dipolar-to-exchange
ratio, and this was illustrated taking parameters for dif-
ferent magnetic materials. In future work it would be of
interest to explore more fully the role of damping and also
to include e�ects of surface anisotropy. A complication in
the case of the damping is that the spin relaxation might
take place through di�erent mechanisms (e.g., magnon�
magnon interactions, scattering from impurities or sur-
face inhomogeneities, etc.). For example, recent experi-
ments [25] on Permalloy nanowires (stripes) showed con-
tributions to the damping due to three-magnon processes
and edge roughness.
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