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Strong spin-selective e�ects have been recently observed in both photoemission and electrical transport exper-
iments in biomolecular systems, opening fascinating possibilities for interfacing semiconductor and biomolecular
systems to create highly e�cient spintronics devices. From the theoretical and experimental point of view there are
strong suggestions that molecular chirality is playing a crucial role. In this study we extend a previously formulated
model (R. Gutierrez, E. Díaz, R. Naaman, G. Cuniberti, Phys. Rev. B 85, 081404 (2012)) describing the linear
propagation of a charge with spin along the axis of a helical charge distribution. We explore di�erent parameter
regions and show that a strong negative spin polarization as observed in the previously mentioned experiments
can be obtained with reasonable values of both the electronic coupling elements and the helical �eld induced
spin�orbit interaction.
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1. Introduction

Exploiting the spin degree of freedom to transfer in-
formation or perform logic operations builds the basis
of spintronics. Currently, the majority of existing spin-
tronic devices are based on inorganic materials. How-
ever, using organic molecules in spintronics, although
very challenging, would o�er many advantages such as
the possibility for chemically tuning the spin-dependent
response as well as their inexpensive synthesis in large
amounts. Organic molecules have been already proposed
for being used e.g. as spin-valves [1�5], and spin de-
pendent tunneling through organic molecules adsorbed
on magnetic substrates has been theoretically demon-
strated [6]. In general terms, the spin selectivity in
organic-based spintronics devices is rather related to the
intrinsic magnetic properties of the electrodes or of that
of the molecules. For molecules lacking magnetic prop-
erties, no strong spin-dependent properties might be ex-
pected. Surprinsingly, it has been recently shown ex-
perimentally [7, 8] that monolayers of double-stranded
DNA (dsDNA) oligomers display strong spin selectivity.
These results can have deep implications not only for the
design of novel, bio-inspired spintronic devices, but also
shed a new light on electron transfer in biologically rel-
evant molecules. Meanwhile, �rst devices based on this
high spin selectivity have been demonstrated: a chiral-
based magnetic-based silicon-compatible memory device
without a permanent magnet [9]. Spin-selective charge
transfer through a self-assembled monolayer (SAM) of
polyalanine was hereby used to magnetize a Ni layer with
a magnetization that corresponds to applying an external
magnetic �eld of the order of 0.4 T to the Ni layer [9].
The problem of spin sensitivity in SAMs started to

draw attention already in the late 90s. Thus, Ray
et al. found in 1999 that organized organic �lms of
the chiral molecule L- or D-stearoyl lysine showed a
large asymmetry in the scattering probability of spin up

and spin down polarized electrons [10]. The found asym-
metries were considerably higher than in gas-phase ex-
periments. Later on, Carmeli et al. reported simi-
lar results for self-assembled monolayers of polyalanine
polypeptides [11]. Several other experiments have mean-
while showed the same spin-�lter-e�ect for di�erent sys-
tems [12�16]. However, a breakthrough took place in
2011, when the two previously mentioned new experi-
ments [7, 8] were published. In the �rst set of experi-
ments [7], spin-selective transmission of unbounded elec-
trons through a SAM of dsDNA on gold was demon-
strated. Hereby, polarized light was used to eject pho-
toelectrons with a de�nite spin polarization state from
the metal surface. By directly measuring the spin of the
transmitted electrons with a Mott polarimeter, values of
the spin polarization as high as 60% at room temperature
were found. More interestingly, the spin-polarized pho-
toelectrons were detected even when the photoelectrons
were generated with unpolarized light. Furthermore, a
linear increase of the spin polarization with increasing
thickness (i.e. length of the dsDNA molecules) of the
SAM was observed. In a second type of experiments [8],
a SAM of single-strand (ss) DNA was deposited on a
nickel �lm on top of a Si substrate. An AFM tip func-
tionalized with a gold nanoparticle to which a ssDNA
was attached with a sequence complementary to that of
the SAM, was approached to the SAM until a molecu-
lar junction was created by the hybridization of the two
complementary strands. Ideally, the junction consists of
a single dsDNA molecule, so that the probed electrical
response is not that of the whole monolayer. A perma-
nent magnet underneath the nickel substrate controlled
the electronic spin alignment in the nickel. The mea-
sured I−V characteristics of the molecular junction re-
vealed spin selectivity, the e�ect being very pronounced
for the 40 and 50 base pairs oligomers and much less
pronounced in the case of shorter, 26 base pairs long,
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molecules. Recent photoemission experiments on bac-
teriorhodopsine [17] along the lines of Ref. [7], seem to
demonstrate that (i) the phenomenon of spin selectivity
is rather universal and (ii) a double-strand structure of
the molecular system is not required to have the e�ect.

Concerning now the theoretical approaches, there have
been only few investigations directly related to the spin
selectivity. Common to all theoretical attempts is to pos-
tulate that there is a sensitive interplay between chirality
and spin-selectivity. More speci�cally, most of the pro-
posed models assume that an electrostatic potential with
helical symmetry induces a spin�orbit coupling (SOC)
term, which can then a�ect the propagation of the elec-
tron through the system. To our knowledge there have
been two main theoretical lines to approach the prob-
lem, which correlate with the two main types of exper-
imental approaches mentioned above: (i) Studies based
on scattering theory at the level of the Born approxi-
mation [18, 19] including spin�orbit interactions and a
helical potential. This approach can be closely related
to the experiments in Ref. [7], where the energies of the
emitted electrons lie well above the energy of molecu-
lar orbitals of the DNA molecules and thus, the problem
can be viewed as a scattering process in an external he-
lical potential; (ii) Approaches based on quantum trans-
port [20, 25] have been also proposed, being closer related
to the second class of experiments [8], which probe the
electrical response of dsDNA molecular junctions in a
two terminal setup. Reference [20] addressed for the �rst
time in the context of a quantum transport model the
possibility that an electrostatic �eld with helical symme-
try could induce a spin�orbit interaction and the con-
sequences for charge transport. In Ref. [22], the mo-
tion of a charge along a helical path including spin�orbit
interactions was treated within a tight-binding model.
A sizeable spin polarization was found. In Ref. [21] a
consistent model Hamiltonian was then derived, describ-
ing the propagation of a spin along a helical path and
with full inclusion of an external helical potential gener-
ated by an array of point charges. It was demonstrated
that in this model a strong spin selectivity was possible,
if an orbital-dependent spin�orbit coupling was assumed.
In Ref. [23] a di�erent mechanism to explain the observed
polarization has been proposed. The authors introduced
the concept of induced spin �ltering, where selectivity
in the transmission of the electron orbital angular mo-
mentum would induce spin selectivity in the transmission
process in case that the metal substrate displayed strong
spin�orbit coupling. In this sense, the observed polariza-
tion turns out to be conditioned by the strong spin�orbit
coupling in the substrate rather than by a strong SOC
inside the molecular system. This e�ect seems however
only to be important for e.g. gold substrates with strong
SOC, but not for surfaces with a much weaker SOC in-
teraction.

In the current study, we extend the model of
Ref. [20] to include more than one orbital per lattice
site in the tight-binding representation of the model

(see next section). We keep however the main assump-
tion of Ref. [20], where a charge was considered to move
with only z-component of its momentum (along the he-
lical axis). This allows to contrast the results with the
investigations in Ref. [21], where a helical path with a
�nite curvature radius and torsion was assumed.

2. Model Hamiltonian and transport approach
2.1. Model Hamiltonian

Our starting point is that in a helical molecular system
like DNA, the electrostatic potential distribution should
display helical symmetry. As a result, a charge mov-
ing along the helical system will experience in its rest
frame an e�ective, momentum-dependent magnetic �eld
which can couple to its spin, leading to a spin�orbit in-
teraction contribution. Thus, if the momentum of the
charge is p and we denote the helical �eld by Ehelix,
the SOC Hamiltonian becomes HSO = λσ(p × Ehelix).
The SOC strength is λ = e~/4m2c2 and σ is a vector
whose components are the Pauli spin matrices σx, σy,
σz. Although this term includes a full three-dimensional
motion of the charge, we will assume from now that
the motion takes place along the helical axis, so that
px = py = 0, pz 6= 0. We model the electrostatic �eld in
a simple way by assuming a distribution of point charges
along a helix [20, 26]. The general solution is quite in-
volved, but the assumption of linear motion near the he-
lical axis allows to use approximate expressions for the
x, y �eld components (the z-component does not play any
role by the assumption of linear motion along the z-axis):

Ehelix(z) = (Ex(z), Ey(z), 0) =

−E0

∑
i,j

gij(z)(cos(Qj∆z), sin(Qj∆z), 0).

Here, the geometric factor gij(z) = (1 + [(z − ib −
j∆z)/a]2)−3/2 and Q = 2π/b with b being the helix pitch
and a the helix radius, see Fig. 1. The index j runs
along one helical turn and labels the z-coordinate of point
charges placed along the helix. ∆z is a discretization step
along the z-axis and the index i runs over the turns of the
helix and connects charges placed at sites which di�er in
their z-coordinate by a pitch length. We chose as refer-
ence b = 3.2 nm, a = 1 nm, and ∆z = 0.32 nm, values
which are close to those of B-DNA. The factor E0 is pro-
portional to the local charge density and it is considered
a free parameter renormalizing the bare SOC strength λ.
When coming to the electronic structure of the

molecule, we will only include two molecular orbitals per
molecular building block of the system. In the case of
e.g. DNA, this can be the frontier molecular orbitals
of the individual bases along the helix like the highest-
occupied molecular orbital (HOMO) and the lowest-
occupied molecular orbital (LUMO). We stress that our
model is meant to be quite generic, so that we include
only the minimal basic features necessary to deal with
the problem in an e�cient way. This is why we will not
consider e.g. disorder e�ects related to the di�erent base
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Fig. 1. Right: A schematic representation of a charge
q with spin σ moving along the axis of a helical charge
distribution. The parameters a, b and ∆z are, respec-
tively, radius and pitch of the helix and the spacing of
the z-component of the position vector of the charges
distributed along the helix. Left: The scattering region
includes two levels A,B per site in the tight-binding rep-
resentation. The spin-orbit term only couples the spin-
up and -down channels for the same levels, i.e. there
is no SOC connecting spin states on the A-strand with
spin states on the B-strand. The model thus describes
transport through a 4-strands ladder corresponding to
the four spin-dependent channels. The imbalance be-
tween the output transmission functions tup and tdown

determines the spin polarization.

sequences in a real DNA molecule. Moreover, we will de-
note the two levels per site included in this formulation
as A,B to avoid a too close connection with HOMO and
LUMO states.

A tight-binding model can thus be formulated and
leads to the following model Hamiltonian [20]:

H =
∑

k=A,B

∑
n,σ

εknd
†
n,k,σdn,k,σ

+VAB

∑
n,σ

[
d†n,B,σdn,A,σ + d†n,A,σdn,B,σ

]

+
∑

k=A,B

∑
n

[(
d†n,k,↑, d

†
n,k,↓

)
Mk

n,n+1

(
dn+1,k,↑

dn+1,k,↓

)]

+
∑

k=A,B

∑
n

[(
d†n,k,↑, d

†
n,k,↓

)
Mk

n,n−1

(
dn−1,k,↑

dn−1,k,↓

)]
. (1)

In this expression, εkn = εk + Vhelix(n) + ∆k(−1)n are
site energies for the k = A,B levels. They include the
constant values εA,B, which we set to zero for simplicity,
the local contribution of the helical potential Vhelix(n) to
site n, and we have also introduced a staggered contri-
bution ∆k(−1)n, which opens aband gap. The term VAB

is the local coupling between the A and B states on each
site n. A gap opening can also be achieved with a large
VAB; however, in order to keep the orders of magnitude
of the electronic coupling parameters in a realistic range

of few tens of meV, we will keep the staggered �eld con-
tribution with ∆k ∼ 60 meV. The results concerning the
spin polarization are not in�uenced qualitatively by this
term. Finally, the coupling matrix Mk

n,n±1 has the fol-
lowing form:

Mk
n,n±1 =

[
W k
n,n±1 Dk

n,n±1

[Dk
n,n±1]

∗
[W k

n,n±1]∗

]

=

[
W k
n,n±1 0

0 [W k
n,n±1]∗

]
+

[
0 Dk

n,n±1

[Dk
n,n±1]

∗
0

]
,

= Mk,hop
n,n±1 +Mk,SOC

n,n±1 ,

Mn,n±1 = (Mn±1,n)†. (2)

In Eq. (2), the diagonal blocks W k
n,n±1 include the

(nearest-neighbor) couplings along the A and B path-
ways. We assume these quantities to be constant and

site independent, so thatW
A(B)
n,n±1 = VA(B) is the local cou-

pling between the two levels A and B at site n. The o�-
diagonal blocks Dk

n,n±1 of theM -matrix couple through
the SOC the up- and down-spin channels. Explicitly,
these contributions look like: Dk

n,n±1 = −αkSOC(Φ(n) +
Φ(n ± 1)). The renormalized SOC coupling is given by
αkSOC = ~Ek0αSOC/2, where we have already included
the �eld strength pre-factor E0 in its de�nition. We have
made here the assumption that the �eld strength may
in general depend on the molecular orbital due to di�er-
ences in the charge distribution associated with di�erent
orbitals, which make them to react in di�erent ways to
the helical �eld. As a result we get an orbital-dependent
SOC e�ective strength [21]. We will consider from now

on these new e�ective SOC strengths αk=A,B
SOC as free pa-

rameters. The function Φ(j) = (Ex(j) − iEy(j))/Ek0 ,
where the x and y components of the helical �eld are
evaluated at discrete sites z = zj = j∆z along the helical
axis (the z-axis).
This Hamiltonian in Eq. (2) preserves time reversal

symmetry generated by the operator T = −iσy ⊗IN×N ,
where N is the number of sites in the discretized tight-
binding model and I is the unit matrix in the Hilbert
space generated by the N localized orbitals.
First-principle electronic structure calculations for e.g.

DNA oligomers [27] yield values of the electronic cou-
plings of the order of few tens of meV. We will take
such orders of magnitude in our discussion below; it is
clear however that to deal with a speci�c molecular type
more careful �rst-principle investigations should be car-
ried out, also including the calculation of the molecule-
substrate interaction strength.

2.2. Charge transport

Spin-dependent transport in the tight-binding model in
Eq. (2) can be represented as a charge transport model in
a 4-strand ladder model, where each strand corresponds
to a molecular orbital (A or B) and to a given spinor
component (↑ and ↓). The speci�c transport mechanism
will in general depend on the molecular system and also
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be in�uenced by the environmental conditions. Being
aware of its potential limitations, we consider transport
in the context of the Landauer approach, which provides
an e�cient framework to analyze the in�uence of di�er-
ent parameters on the spin polarization. The Hamilto-
nian (2) needs to be extended to include the coupling to
the electrodes. We use a standard tunnel Hamiltonian,
yielding the following additional contributions to Eq. (2):

Hleads =
∑

β=L,R

∑
p

∑
k=A,B

∑
σ=↑,↓

εβp,kσc
†
βp,kσcβp,kσ

+
∑

k=A,B

∑
σ=↑,↓

VLp,kσ(c†Lp,kσd1,k,σ + H.c.)

+
∑

k=A,B

∑
σ=↑,↓

VRp,σ(c†Rp,kσdN,k,σ + H.c.). (3)

Along similar lines as in Ref. [21], we consider four in-
dependent L(left)- and four independent R(right)-leads,
each of them standing for a spin channel connected to a
speci�c molecular orbital (A,B) and being represented
by a semi-in�nite tight-binding chain. Thus, the �rst
row describes semi-in�nite tight-binding chains for each
of the four independent electrodes with dispersion rela-

tion given by εβp,kσ = εβkσ + 4V0 cospa. The hopping
integral V0 is determined by diagonalizing the Hamilto-
nian of Eq. (2), calculating the width of its eigenvalue
spectrum ∆E and taking V0 = ∆E/4. This choice guar-
antees that we include all the relevant molecular elec-
tronic states in the calculation of the transmission func-
tion. V0 is also taken as the e�ective band width of the
electrodes. The last two rows give the coupling between
the left (right) electrode and the n = 1 (n = N) sites of
the scattering region.

The quantum mechanical transmission function
is given by the standard expression: T (E) =
Tr{Ga(E)ΓRGr(E)ΓL}. Here Gr(a)(E) are retarded
(advanced) matrix Green's functions for the scattering
region including the in�uence of the Hleads via retarded
self-energy matrices Σr,L(E) and Σr,R(E). The re-
tarded Green function matrix can be determined via
Dyson's equation (Gr)−1(E) = (E + iη)I − H −
Σr,L(E) − Σr,R(E). The spectral functions ΓL,R(E)
of the left and right electrodes are related to the self-
energies via ΓL,R(E) = −2ImΣr,L,R(E). The only
eight non-vanishing elements of the spectral functions
are ΓL↑,A,B ,Γ

L
↓,A,B ,Γ

R
↑,A,B ,Γ

R
↓,A,B . These quantities are

energy-dependent and can be computed analytically for
semi-in�nite chains. Using the previous expressions and
approximations, the total transmission function for the
system can be written as:

T (E) = T↑↑(E) + T↓↑(E)︸ ︷︷ ︸
tup(E)

+T↑↓(E) + T↓↓(E)︸ ︷︷ ︸
tdown(E)

T↑↑(E) = ΓL↑,A
[
ΓR↑,A|G1↑,N↑|2 + ΓR↑,B |G1↑,2N↑|2

]
+ΓL↑,B

[
ΓR↑,A|GN+1↑,N↑|2 + ΓR↑,B |GN+1↑,2N↑|2

]
T↑↓(E) = ΓL↑,A

[
ΓR↓,A|G1↑,N↓|2 + ΓR↓,B |G1↑,2N↓|2

]

+ΓL↑,B
[
ΓR↓,B |GN+1↑,2N↓|2 + ΓR↓,A|GN+1↑,N↓|2

]
T↓↓(E) = ΓL↓,A

[
ΓR↓,A|G1↓,N↓|2 + ΓR↓,B |G1↓,2N↓|2

]
+ΓL↓,B

[
ΓR↓,A|GN+1↓,N↓|2 + ΓR↓,B |GN+1↓,2N↓|2

]
T↓↑(E) = ΓL↓,A

[
ΓR↑,A|G1↓,N↑|2 + ΓR↑,B |G1↓,2N↑|2

]
+ΓL↓,B

[
ΓR↑,B |GN+1↓,2N↑|2 + ΓR↑,A|GN+1↓,N↑|2

]
. (4)

In the previous equations, Gnσ,mν(E) with σ, ν =↑, ↓
are matrix elements of the previously de�ned retarded
Green function of the SOC-active region including the
in�uence of the L- and R-electrodes via appropriate self-
energies. Each contribution in Eq. (4) can be related to
a di�erent transport process without or with spin �ip.
Thus, all contributions included in T↑↑ and T↓↓ are re-
lated to processes taking place only in the spin-up or
spin-down channels, respectively, while T↑↓ and T↓↑ in-
volve all processes �ipping the electron spin.
The quantities tup(E) and tdown(E) encode all con-

tributions (with and without spin �ip) in the outgo-
ing spin-up and spin-down channels, respectively. With
their help, we can de�ne a spin polarization (SP)
as P (E) = [tup(E)− tdown(E)]/T (E).

3. Results

Concerning the typical order of magnitude of the spin�
orbit interaction as induced by the helical �eld, we have
provided a rough estimate of its strength in a previous
study [20]; in the present investigation we are going to
use similar values in the range of 3�6 meV nm, being
aware that a more accurate estimation would require a
separate �rst-principle study of the electronic structure of
speci�c molecular candidates. This may turn out com-
putationally very demanding, mainly for molecules like
DNA where the in�uence of the conformation and the
backbones should be taken into account in an accurate
way. Our goal is rather to illustrate what can be expected
from a minimal approach to spin-dependent transport
in a helical system. In this paper, we will keep �xed
the bare electronic-coupling parameters: VA = 10 meV,
VB = 90 meV and VAB = 60 meV. These values have typ-
ical orders of magnitude as for a DNA molecule or other
weakly π-conjugated systems. We remark, however, that
we are not addressing a speci�c molecular system, but
are deriving a generic model and investigating its main
properties.
Figure 2 shows the energy-dependent spin polarization

for di�erent number of helical turns L. First of all, we
notice that there is a rather strong tendency to negative
spin polarization for hole transport (energies below the
Fermi level, which is set at zero), while positive polariza-
tion at other energies is considerably weaker. Moreover,
we �nd a tendency to odd-even e�ects in the global be-
havior of the spin polarization, with smaller values for
odd lengths (left part of Fig. 2) and much larger val-
ues for even lengths (right part of the same �gure). In-
teresting is that the dominant negative polarization has



Spin-Dependent E�ects in Helical Molecular Systems. . . 189

Fig. 2. Spin polarization as a function of the incom-
ing electron energy and for di�erent number of helical
turns L. The incoming charge is unpolarized. A rather
strong energy dependence is found, but there is a clear
tendency to an oscillating behavior as a function of the
number of turns between low polarization (odd L) and
large polarization (even L). This e�ect is typical of sys-
tems where coherent tunneling dominates the transport.
Electronic parameters: VA = 10 meV, VB = 90 meV,
VAB = 60 meV, αA

SOC = αB
SOC = 6 meVnm.

also been measured experimentally [7, 8]. Concerning
the length dependence, the results are less conclusive:
a linear dependence was found in the photo-emission
experiments [7], while a less clear behavior is observed
in the transport experiments [8]. The odd-even behav-
ior we �nd is most likely related to a treatment based
on the Landauer approach with only coherent transport
included; similar odd-even e�ects are well-known from
calculations of simple linear chains at the same level
of theory [28].

Figure 3 shows the decomposition of the transmission
function of the system into its individual components ac-
cording to Eq. (4). The inset shows the tup and tdown

components of the total transmission in the outgoing spin
channels. The emergence of a negative spin polarization
is clearly seen in the energy window between −60 meV
and −40 meV, where the outgoing tdown is clearly larger.
At other energies, the di�erence between both compo-
nents is much smaller, so that the resulting spin polar-
ization is much weaker. The main part of Fig. 3 shows a
further decomposition of tup, down into the relative contri-
butions of spin-�ip processes ∆tflip = T↑↓−T↓↑ and non-
�ip processes ∆tno−flip = T↑↑−T↓↓, see also Eq. (4). From
this �gure, we see that both types of spin-dependent pro-
cesses are contributing to the total transmissions out of
the spin-up and spin-down channels. Moreover, a sizeable
polarization is clearly obtained when both contributions
have the same sign.

Figure 4 shows the energy dependent spin polariza-
tion for a �xed number of turns L = 4 but with varying
ratios of the orbital-dependent e�ective spin�orbit cou-
plings αkSOC. Notice the dramatic in�uence of the relative

strengths, which can lead to a full suppression of the po-
larization in the special case αB

SOC/α
A
SOC � 1.

Fig. 3. Di�erent components of the spin dependent
conductance (transmission) for a �xed length of the he-
lical domain (L = 4 turns, dashed line in the right part
of Fig. 2). The incoming charge is unpolarized. The in-
set shows the total outgoing components of the spin up
(tup) and spin down (tdown) channels. The main panel
displays a further resolution of the out going up- and
down-channels into the relative contributions of spin-�ip
processes ∆tflip = T↑↓ − T↓↑ and ∆tno−flip = T↑↑ − T↓↓.
The energy window around −50 meV where a larger spin
polarization is obtained, corresponds to the case where
sgn(tflip) = sgn(∆tno−flip), compare with the right part
of Fig. 2. Electronic parameters: VA = 10 meV, VB =
90 meV, VAB = 60 meV, αA

SOC = αB
SOC = 6 meVnm.

Fig. 4. Spin polarization for di�erent ratios of the
orbital-dependent e�ective spin�orbit strengths αk

SOC.
For a detailed discussion of the found behavior see the
main text. Electronic parameters: VA = 10 meV,
VB = 90 meV, VAB = 60 meV.

We can gain a qualitative understanding of this be-
havior by the following analysis, which takes as start-
ing point the continuum formulation of the tight-binding
model in Eq. (2). Without going into many technical
details, it can be shown that by performing a unitary
transformation with the form UA ⊕ UB the spin�orbit
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coupling terms for the A- and B-states can in general
be removed from the Hamiltonian, as far as (i) no spin-
dependent interactions between the states A and B and
(ii) no electronic coupling between the states are consid-
ered (VAB = 0). This simply results from the fact that for
the assumed model the spin�orbit coupling can be exactly
included in the de�nition of the momentum as a non-
Abelian gauge �eld, which can then be removed by an ap-
propriate unitary transformation. The unitary operators
are de�ned as Uk = exp

(
i(mkα

k
SOC/~)

∫ z
duMSOC(u)

)
,

where MSOC(u) is the continuum version of the spin-
dependent tight-binding block matrix in Eq. (2). How-
ever, if e.g. VAB 6= 0 as in our case, after performing this
unitary transformation the inter-level coupling VAB is
renormalized into VAB exp

(
iδAB

∫ z
duMSOC(u)

)
, with

δAB = (mAα
A
SOC/~)− (mBα

B
SOC/~). Since mkα

k
SOC/~ ∼

αkSOC/Vk, we see that in the fully symmetric case αA
SOC =

αB
SOC and VA = VB, the phase factor exactly vanishes

and all spin-dependent coupling terms are removed from
the Hamiltonian, so that no spin-polarization can be ob-
tained. The same will come out in the asymmetric case,
but for a combination of the SOC couplings and elec-
tronic hopping such that δAB � 1. This is the situation
of the dashed line in Fig. 4. Other combinations of the
ratios αkSOC/Vk will clearly lead to further modulations
of the spin polarization.

4. Discussion and conclusions

We have investigated within a minimal model Hamil-
tonian approach spin-dependent transport in a helical
�eld. Our model assumes propagation of a charge with
spin along the z-axis of a helical point charge distri-
bution. The resulting helical electrostatic �eld leads
to a spin�orbit interaction term, which resembles the
Rashba SOC in semiconductors which lack inversion sym-
metry. However, while the standard Rashba �eld is usu-
ally considered a constant, the electric �eld here is vary-
ing in space and encodes the helical symmetry of the
problem. We have shown that using this model a size-
able (mostly negative) spin polarization can be obtained.
Strong energy-dependent spin polarization e�ects were
previously demonstrated in Ref. [21] for a similar model
as that presented here. The main di�erence was however
the fact that the charge was allowed to move along a he-
lical pathway. This change in the topology of the trans-
port process led to diagonal spin-dependent contribu-
tions in the SOC Hamiltonian, i.e. to terms proportional
to σz. Those contributions are absent in the current
model, where only o�-diagonal terms appear. The re-
sults of both models cannot be compared one-to-one, but
it seems that the strong energy-dependence of the polar-
ization found in Ref. [21] is strongly determined by the
previously mentioned diagonal contributions to the SOC
Hamiltonian, which were proportional to the curvature of
the helical transport pathway and were thus strongly de-
pendent on geometrical e�ects like changes in the radius
of the transport pathway. The sensitivity to asymmetries

in the SOC as considered here by assuming an orbital-
dependent e�ective SOC coupling αkSOC suggest that ad-
ditional studies based on a �rst-principle analysis of the
electronic structure are required in order to make the
current model more realistic. Notice also that the ob-
tained spin polarizations do not require very large values
of the SOC: it is rather the relative ratio of the SOC
to the electronic coupling which seems to matter, thus
further supporting the conclusions of our previous stud-
ies in Refs. [20, 21]. Further extensions of this model
to describe an incoherent hopping transport scenario are
currently under investigation.
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